Genome-Wide Identification and Functional Differentiation of Fatty Acid Desaturase Genes in L.

Erli Niu, Song Gao, Wenjun Hu, Chengcheng Zhang, Daqun Liu, Guoxin Shen, Shenlong Zhu
Author Information
  1. Erli Niu: Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
  2. Song Gao: Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
  3. Wenjun Hu: Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
  4. Chengcheng Zhang: Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
  5. Daqun Liu: Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. ORCID
  6. Guoxin Shen: Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
  7. Shenlong Zhu: Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. ORCID

Abstract

Olive ( L.) is a world-famous woody oil tree and popular for redundant unsaturated fatty acids. Fatty acid desaturase (FAD) genes are responsible for fatty acid desaturation and stress regulation but have not yet been identified in olive at the whole genome level. This study identified 40 and 27 FAD genes in the cultivated olive cv. Farga and the wild olive var. Sylvestris, respectively. Phylogenetic analysis showed that all the FAD genes could be classified into the soluble FAB2/SAD clade and membrane-bound clade, including ADS/FAD5, DES, FAD4, SLD, ω-6 and ω-3, with the high consistency of subcellular localization, motif composition and exon-intron organization in each group. FAD genes in olive showed the diverse functional differentiation in morphology of different tissues, fruit development and stress responses. Among them, and were up-regulated and , and were down-regulated under the wound, and cold stresses. This study presents a comprehensive analysis of the FAD genes at the whole-genome level in olives and will provide guidance for the improvement of oil quality or stress tolerance of olive trees.

Keywords

References

  1. Plant J. 2008 May;54(4):640-55 [PMID: 18476869]
  2. BMC Biol. 2020 Oct 26;18(1):148 [PMID: 33100219]
  3. Plant Physiol. 2010 Jun;153(2):655-65 [PMID: 20382895]
  4. Biol Rev Camb Philos Soc. 2012 Nov;87(4):885-99 [PMID: 22512893]
  5. Appl Biochem Biotechnol. 2018 Feb;184(2):582-598 [PMID: 28799009]
  6. Plant J. 2005 Nov;44(3):361-71 [PMID: 16236147]
  7. Nature. 2001 Oct 18;413(6857):700 [PMID: 11607022]
  8. Genes (Basel). 2020 Aug 03;11(8): [PMID: 32756391]
  9. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:109-136 [PMID: 15012259]
  10. J Exp Bot. 2008;59(8):2043-56 [PMID: 18453533]
  11. Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419 [PMID: 33125078]
  12. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9413-E9422 [PMID: 29078332]
  13. Science. 1975 Jan 31;187(4174):319-27 [PMID: 17814259]
  14. PLoS One. 2012;7(1):e30355 [PMID: 22279586]
  15. Plant Physiol. 2002 Aug;129(4):1732-43 [PMID: 12177486]
  16. Plant Mol Biol. 1992 May;19(1):169-91 [PMID: 1600168]
  17. BMC Plant Biol. 2015 Mar 27;15:91 [PMID: 25888376]
  18. Mol Biol Rep. 2020 Jun;47(6):4345-4355 [PMID: 32468255]
  19. New Phytol. 2015 Apr;206(1):436-447 [PMID: 25420413]
  20. Comput Struct Biotechnol J. 2022 Mar 04;20:1229-1243 [PMID: 35317231]
  21. Biochim Biophys Acta. 2001 Dec 3;1522(2):122-9 [PMID: 11750064]
  22. Biosci Biotechnol Biochem. 2004 Jun;68(6):1175-84 [PMID: 15215578]
  23. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  24. J Agric Food Chem. 2009 Apr 8;57(7):2875-81 [PMID: 19334761]
  25. J Agric Food Chem. 2010 Feb 10;58(3):1870-7 [PMID: 20070085]
  26. Hortic Res. 2021 Apr 1;8(1):64 [PMID: 33790235]
  27. Gigascience. 2016 Jun 27;5:29 [PMID: 27346392]
  28. Plant Physiol Biochem. 2018 Oct;131:63-69 [PMID: 29753601]
  29. Plant Physiol. 2013 Jan;161(1):81-96 [PMID: 23175755]
  30. BMC Genomics. 2020 Apr 15;21(1):299 [PMID: 32293267]
  31. Transgenic Res. 2010 Aug;19(4):647-54 [PMID: 20012191]
  32. J Exp Bot. 2019 Feb 5;70(3):985-994 [PMID: 30371807]
  33. Prog Lipid Res. 2002 May;41(3):254-78 [PMID: 11814526]
  34. Plant Signal Behav. 2009 Aug;4(8):746-9 [PMID: 19820353]
  35. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]

Grants

  1. LQ22C160010/Zhejiang Provincial Natural Science Foundation of China
  2. 2021C02002/Key Research and Development Program of Zhejiang Province

Word Cloud

Created with Highcharts 10.0.0oliveFADgenesstressLfattyacidanalysisoilFattydesaturaseidentifiedlevelstudyshowedcladeOliveworld-famouswoodytreepopularredundantunsaturatedacidsresponsibledesaturationregulationyetwholegenome4027cultivatedcvFargawildvarSylvestrisrespectivelyPhylogeneticclassifiedsolubleFAB2/SADmembrane-boundincludingADS/FAD5DESFAD4SLDω-6ω-3highconsistencysubcellularlocalizationmotifcompositionexon-intronorganizationgroupdiversefunctionaldifferentiationmorphologydifferenttissuesfruitdevelopmentresponsesAmongup-regulateddown-regulatedwoundcoldstressespresentscomprehensivewhole-genomeoliveswillprovideguidanceimprovementqualitytolerancetreesGenome-WideIdentificationFunctionalDifferentiationAcidDesaturaseGenesmorphogenesisOleaeuropaeaphylogeneticresponse

Similar Articles

Cited By