Data-Driven and Multiscale Modeling of DNA-Templated Dye Aggregates.

Austin Biaggne, Lawrence Spear, German Barcenas, Maia Ketteridge, Young C Kim, Joseph S Melinger, William B Knowlton, Bernard Yurke, Lan Li
Author Information
  1. Austin Biaggne: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA. ORCID
  2. Lawrence Spear: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
  3. German Barcenas: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA. ORCID
  4. Maia Ketteridge: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
  5. Young C Kim: Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
  6. Joseph S Melinger: Electronics Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
  7. William B Knowlton: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
  8. Bernard Yurke: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
  9. Lan Li: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA. ORCID

Abstract

Dye aggregates are of interest for excitonic applications, including biomedical imaging, organic photovoltaics, and quantum information systems. Dyes with large transition dipole moments (μ) are necessary to optimize coupling within dye aggregates. Extinction coefficients (ε) can be used to determine the μ of dyes, and so dyes with a large ε (>150,000 M−1cm−1) should be engineered or identified. However, dye properties leading to a large ε are not fully understood, and low-throughput methods of dye screening, such as experimental measurements or density functional theory (DFT) calculations, can be time-consuming. In order to screen large datasets of molecules for desirable properties (i.e., large ε and μ), a computational workflow was established using machine learning (ML), DFT, time-dependent (TD-) DFT, and molecular dynamics (MD). ML models were developed through training and validation on a dataset of 8802 dyes using structural features. A Classifier was developed with an accuracy of 97% and a Regressor was constructed with an R2 of above 0.9, comparing between experiment and ML prediction. Using the Regressor, the ε values of over 18,000 dyes were predicted. The top 100 dyes were further screened using DFT and TD-DFT to identify 15 dyes with a μ relative to a reference dye, pentamethine indocyanine dye Cy5. Two benchmark MD simulations were performed on Cy5 and Cy5.5 dimers, and it was found that MD could accurately capture experimental results. The results of this study exhibit that our computational workflow for identifying dyes with a large μ for excitonic applications is effective and can be used as a tool to develop new dyes for excitonic applications.

Keywords

References

  1. Angew Chem Int Ed Engl. 2021 Jan 18;60(3):1364-1373 [PMID: 33021029]
  2. Chem Cent J. 2012 Jul 18;6(1):70 [PMID: 22809100]
  3. Commun Chem. 2021;4: [PMID: 35474961]
  4. J Phys Chem B. 2018 May 17;122(19):5020-5029 [PMID: 29698610]
  5. Nat Rev Chem. 2020 Sep;4(9):490-504 [PMID: 37127960]
  6. Bioconjug Chem. 2020 Feb 19;31(2):194-213 [PMID: 31365819]
  7. J Chem Theory Comput. 2013 Jun 11;9(6):2749-60 [PMID: 26583866]
  8. J Phys Chem A. 2018 Mar 1;122(8):2086-2095 [PMID: 29420037]
  9. J Phys Chem A. 2017 Sep 21;121(37):6905-6916 [PMID: 28813152]
  10. Methods Appl Fluoresc. 2017 Dec 21;6(1):012001 [PMID: 28914610]
  11. J Photochem Photobiol B. 2019 Oct;199:111595 [PMID: 31470269]
  12. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  13. Nanoscale Adv. 2020 Jun 22;2(8):3115-3130 [PMID: 36134280]
  14. Nat Chem. 2011 Sep 23;3(10):763-74 [PMID: 21941248]
  15. Phys Chem Chem Phys. 2018 Mar 28;20(13):8554-8563 [PMID: 29542743]
  16. Chem Phys. 2008 Aug 22;357(1-3):79-84 [PMID: 20617102]
  17. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  18. J Phys Chem Lett. 2022 Mar 31;13(12):2782-2791 [PMID: 35319215]
  19. Chem Commun (Camb). 2013 Jun 11;49(46):5298-300 [PMID: 23636273]
  20. ACS Nano. 2019 Mar 26;13(3):2986-2994 [PMID: 30758934]
  21. Nucleic Acids Res. 2021 Jan 8;49(D1):D1388-D1395 [PMID: 33151290]
  22. J Phys Chem A. 2016 Dec 22;120(50):9941-9947 [PMID: 27934475]
  23. J Phys Chem B. 2014 Jan 9;118(1):152-63 [PMID: 24328104]
  24. J Chem Phys. 2018 Feb 28;148(8):085101 [PMID: 29495791]
  25. ACS Photonics. 2015 Mar 18;2(3):398-404 [PMID: 25839049]
  26. Sci Data. 2019 Dec 5;6(1):307 [PMID: 31804487]
  27. J Chem Theory Comput. 2016 Aug 9;12(8):4114-27 [PMID: 27300587]
  28. J Phys Chem Lett. 2018 May 17;9(10):2639-2646 [PMID: 29733216]
  29. RSC Adv. 2021 May 26;11(31):19029-19040 [PMID: 35478639]
  30. J Phys Chem C Nanomater Interfaces. 2022 Feb 24;126(7):3475-3488 [PMID: 35242270]
  31. J Chem Inf Model. 2020 Dec 28;60(12):5984-5994 [PMID: 33090804]
  32. J Phys Chem B. 2020 Oct 29;124(43):9636-9647 [PMID: 33052691]
  33. J Phys Chem B. 2021 Dec 23;125(50):13670-13684 [PMID: 34894675]
  34. Q Rev Biophys. 2011 Feb;44(1):123-51 [PMID: 21108866]
  35. JACS Au. 2021 Mar 17;1(4):427-438 [PMID: 34467305]
  36. Protein Sci. 2021 Jan;30(1):70-82 [PMID: 32881101]
  37. Anal Sci. 2014;30(3):327-49 [PMID: 24614728]
  38. J Am Chem Soc. 2017 May 31;139(21):7287-7293 [PMID: 28480703]
  39. ACS Omega. 2022 Mar 22;7(13):11002-11016 [PMID: 35415341]
  40. Chem Soc Rev. 2013 Jan 7;42(1):291-304 [PMID: 23023240]
  41. J Phys Chem Lett. 2017 Dec 7;8(23):5827-5833 [PMID: 29144136]
  42. Photochem Photobiol. 2006 May-Jun;82(3):695-701 [PMID: 16435882]
  43. Bioconjug Chem. 1993 Mar-Apr;4(2):105-11 [PMID: 7873641]
  44. J Mol Model. 2016 Jan;22(1):25 [PMID: 26744295]
  45. Molecules. 2021 Jan 20;26(3): [PMID: 33498306]
  46. ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26802-10 [PMID: 26552499]
  47. J Phys Chem A. 2017 Feb 16;121(6):1213-1222 [PMID: 28103041]
  48. J Chem Theory Comput. 2017 Mar 14;13(3):1034-1043 [PMID: 28245118]
  49. J Phys Chem A. 2018 Nov 21;122(46):8989-8997 [PMID: 30380862]
  50. Sci Data. 2020 Sep 8;7(1):295 [PMID: 32901041]
  51. J Phys Chem B. 2021 Sep 16;125(36):10240-10259 [PMID: 34473494]
  52. J Phys Chem B. 2009 May 7;113(18):6378-96 [PMID: 19366259]
  53. Photochem Photobiol. 2018 Mar;94(2):277-289 [PMID: 29166541]
  54. Chem Rev. 2009 Jan;109(1):190-212 [PMID: 19105748]
  55. Nat Commun. 2016 Sep 29;7:12949 [PMID: 27680284]
  56. Chem Rev. 2005 Aug;105(8):2999-3093 [PMID: 16092826]
  57. Nature. 2007 Apr 12;446(7137):782-6 [PMID: 17429397]
  58. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  59. Radiat Res. 1963 Sep;20:55-70 [PMID: 14061481]
  60. Chem Rev. 2017 Jan 25;117(2):249-293 [PMID: 27428615]
  61. J Chem Theory Comput. 2012 Apr 10;8(4):1255-9 [PMID: 26596742]

Grants

  1. DE-SC0020089/U.S. Department of Energy (DoE), Office of Basic Energy Sciences, Division of Materials Science and Engineering through the Established Program to Stimulate Competitive Research (EPSCoR)
  2. N00014-19-1-2615/Department of the Navy, Office of Naval Research (ONR)

MeSH Term

Coloring Agents
DNA
DNA Replication
Molecular Dynamics Simulation

Chemicals

Coloring Agents
DNA

Word Cloud

Created with Highcharts 10.0.0dyeslargedyeμεDFTaggregatesexcitonicapplicationscandensityfunctionaltheoryusingMLMDCy5Dyetransitiondipoleused000propertiesexperimentalcomputationalworkflowmachinelearningtime-dependentmoleculardynamicsdevelopedRegressorresultsinterestincludingbiomedicalimagingorganicphotovoltaicsquantuminformationsystemsDyesmomentsnecessaryoptimizecouplingwithinExtinctioncoefficientsdetermine>150M−1cm−1engineeredidentifiedHoweverleadingfullyunderstoodlow-throughputmethodsscreeningmeasurementscalculationstime-consumingorderscreendatasetsmoleculesdesirableieestablishedTD-modelstrainingvalidationdataset8802structuralfeaturesClassifieraccuracy97%constructedR209comparingexperimentpredictionUsingvalues18predictedtop100screenedTD-DFTidentify15relativereferencepentamethineindocyanineTwobenchmarksimulationsperformed5dimersfoundaccuratelycapturestudyexhibitidentifyingeffectivetooldevelopnewData-DrivenMultiscaleModelingDNA-TemplatedAggregatesDNAscaffoldsexcitonextinctioncoefficientmoment

Similar Articles

Cited By