Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs.

Vincenzo Tragni, Guido Primiano, Albina Tummolo, Lucas Cafferati Beltrame, Gianluigi La Piana, Maria Noemi Sgobba, Maria Maddalena Cavalluzzi, Giulia Paterno, Ruggiero Gorgoglione, Mariateresa Volpicella, Lorenzo Guerra, Domenico Marzulli, Serenella Servidei, Anna De Grassi, Giuseppe Petrosillo, Giovanni Lentini, Ciro Leonardo Pierri
Author Information
  1. Vincenzo Tragni: Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy. ORCID
  2. Guido Primiano: Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy. ORCID
  3. Albina Tummolo: Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy.
  4. Lucas Cafferati Beltrame: Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy.
  5. Gianluigi La Piana: Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy. ORCID
  6. Maria Noemi Sgobba: Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy.
  7. Maria Maddalena Cavalluzzi: Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy. ORCID
  8. Giulia Paterno: Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy.
  9. Ruggiero Gorgoglione: Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy.
  10. Mariateresa Volpicella: Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy. ORCID
  11. Lorenzo Guerra: Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy.
  12. Domenico Marzulli: Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
  13. Serenella Servidei: Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
  14. Anna De Grassi: Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy. ORCID
  15. Giuseppe Petrosillo: Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy. ORCID
  16. Giovanni Lentini: Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy. ORCID
  17. Ciro Leonardo Pierri: Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy. ORCID

Abstract

Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33608-33618 [PMID: 33318181]
  2. J Biol Chem. 2014 Jul 18;289(29):20359-69 [PMID: 24898252]
  3. Mol Genet Genomic Med. 2022 Jan;10(1):e1852 [PMID: 34964562]
  4. J Mol Biol. 2012 Jan 20;415(3):527-37 [PMID: 22137894]
  5. Nature. 2020 Aug;584(7822):630-634 [PMID: 32814900]
  6. Biochim Biophys Acta. 2009 Oct;1788(10):2048-58 [PMID: 19539604]
  7. Annu Rev Biochem. 2011;80:1033-53 [PMID: 21417719]
  8. Orphanet J Rare Dis. 2021 Oct 9;16(1):413 [PMID: 34627336]
  9. Neurology. 1979 Dec;29(12):1578-83 [PMID: 574220]
  10. FEBS Lett. 2021 Apr;595(8):1003-1024 [PMID: 33513266]
  11. J Biol Chem. 2003 Jan 31;278(5):3403-9 [PMID: 12438317]
  12. Cell. 2008 Jul 11;134(1):112-23 [PMID: 18614015]
  13. Brain. 2017 Feb;140(2):e11 [PMID: 27993888]
  14. Nucleic Acids Res. 2015 Dec 2;43(21):10534-45 [PMID: 26433229]
  15. Am J Hum Genet. 2006 Feb;78(2):345-9 [PMID: 16400613]
  16. J Med Genet. 2011 Oct;48(10):691-7 [PMID: 21931170]
  17. Exp Neurol. 2004 Aug;188(2):491-4 [PMID: 15246848]
  18. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2021 Mar 10;38(3):271-274 [PMID: 33751540]
  19. Mitochondrion. 2014 Sep;18:49-57 [PMID: 25251739]
  20. Biophys J. 2014 Aug 19;107(4):879-90 [PMID: 25140423]
  21. Sci Rep. 2019 Apr 25;9(1):6553 [PMID: 31024065]
  22. Wellcome Open Res. 2020 May 4;5:84 [PMID: 32671231]
  23. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5887-92 [PMID: 23530243]
  24. Mitochondrion. 2014 Sep;18:76-81 [PMID: 25128872]
  25. Mol Aspects Med. 2011 Aug;32(4-6):223-33 [PMID: 22020112]
  26. Essays Biochem. 2010;47:37-52 [PMID: 20533899]
  27. FASEB J. 2008 Nov;22(11):3878-87 [PMID: 18676402]
  28. Curr Neurol Neurosci Rep. 2010 Mar;10(2):118-26 [PMID: 20425236]
  29. Sci Rep. 2018 Mar 20;8(1):4919 [PMID: 29559686]
  30. Free Radic Res Commun. 1992;16(6):409-19 [PMID: 1516850]
  31. Mol Genet Metab. 2019 Mar;126(3):250-258 [PMID: 30642748]
  32. J Mol Biol. 2001 Jun 15;309(4):989-1002 [PMID: 11399074]
  33. DNA Cell Biol. 2002 Dec;21(12):857-67 [PMID: 12573046]
  34. Cells. 2022 Feb 11;11(4): [PMID: 35203288]
  35. Pediatr Neurol. 2008 Oct;39(4):223-35 [PMID: 18805359]
  36. J Nutr. 2016 Nov;146(11):2274-2280 [PMID: 27733530]
  37. Cells. 2019 May 14;8(5): [PMID: 31091796]
  38. Biomolecules. 2018 Oct 25;8(4): [PMID: 30366441]
  39. Mitochondrion. 2007 Jun;7 Suppl:S78-88 [PMID: 17482886]
  40. J Liposome Res. 2006;16(3):249-64 [PMID: 16952879]
  41. Sci Rep. 2020 May 19;10(1):8225 [PMID: 32427921]
  42. Essays Biochem. 2018 Jul 20;62(3):467-481 [PMID: 29980632]
  43. Nat Biomed Eng. 2021 Sep;5(9):951-967 [PMID: 33795852]
  44. Pediatr Res. 2009 Aug;66(2):121-7 [PMID: 19390491]
  45. Ann Neurol. 1987 Oct;22(4):498-506 [PMID: 2829705]
  46. BMC Neurosci. 2008 Dec 10;9 Suppl 3:S5 [PMID: 19091002]
  47. Pediatr Neurol. 2020 Sep;110:25-29 [PMID: 32684373]
  48. Arch Dis Child. 2013 Jun;98(6):454-61 [PMID: 23532493]
  49. Trends Mol Med. 2020 Jan;26(1):40-57 [PMID: 31727544]
  50. Nutr Rev. 2022 Mar 10;80(4):677-698 [PMID: 34472618]
  51. Mol Genet Metab. 2004 Apr;81(4):263-72 [PMID: 15059613]
  52. Biochim Biophys Acta. 2014 Apr;1837(4):408-17 [PMID: 24183692]
  53. J Clin Endocrinol Metab. 2003 Dec;88(12):5921-6 [PMID: 14671191]
  54. Nat Commun. 2018 Apr 30;9(1):1728 [PMID: 29712914]
  55. BMC Res Notes. 2011 Dec 22;4:557 [PMID: 22192149]
  56. Biophys Chem. 2015 Jan;196:1-9 [PMID: 25237718]
  57. J Chemother. 2016 Dec;28(6):500-505 [PMID: 26042586]
  58. Biochim Biophys Acta. 2016 Nov;1864(11):1473-80 [PMID: 27479487]
  59. Biochim Biophys Acta. 2009 Oct;1790(10):1149-60 [PMID: 19664690]
  60. J Nutr. 2007 Jan;137(1):25-30 [PMID: 17182796]
  61. Neurology. 2000 Sep 26;55(6):854-8 [PMID: 10994008]
  62. Am J Respir Crit Care Med. 2016 Mar 15;193(6):634-41 [PMID: 26540136]
  63. J Biol Chem. 2007 May 18;282(20):14708-18 [PMID: 17369262]
  64. Science. 1994 Mar 11;263(5152):1404-10 [PMID: 8128220]
  65. Nutr Clin Care. 2002 Mar-Apr;5(2):66-74 [PMID: 12134712]
  66. Arch Biochem Biophys. 1985 Mar;237(2):408-14 [PMID: 2983613]
  67. Pharmaceutics. 2019 Jul 24;11(8): [PMID: 31344836]
  68. Brain Dev. 2020 Jun;42(6):457-461 [PMID: 32209270]
  69. Phys Chem Chem Phys. 2014 Sep 21;16(35):18907-17 [PMID: 25083519]
  70. Am J Hum Genet. 2006 Dec;79(6):1125-9 [PMID: 17186472]
  71. Nat Genet. 2012 Jun 10;44(7):797-802 [PMID: 22683713]
  72. Nature. 2015 Aug 13;524(7564):234-8 [PMID: 26176921]
  73. Curr Pharm Des. 2011;17(21):2190-5 [PMID: 21774784]
  74. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2331-6 [PMID: 18272479]
  75. FEBS J. 2008 Mar;275(6):1103-17 [PMID: 18279395]
  76. Antioxidants (Basel). 2021 May 17;10(5): [PMID: 34067882]
  77. J Inherit Metab Dis. 2021 Jan;44(1):4-5 [PMID: 33155302]
  78. Mol Genet Metab. 2020 Sep - Oct;131(1-2):1-13 [PMID: 33129691]
  79. Mol Genet Metab. 2016 Nov;119(3):214-222 [PMID: 27623250]
  80. Ann Neurol. 2005 Jan;57(1):104-10 [PMID: 15529299]
  81. J Inherit Metab Dis. 2003;26(2-3):147-69 [PMID: 12889657]
  82. Biochim Biophys Acta. 2013 Oct;1827(10):1245-55 [PMID: 23850633]
  83. EMBO J. 2002 Jul 15;21(14):3829-40 [PMID: 12110594]
  84. Hum Mol Genet. 2018 Feb 1;27(3):499-504 [PMID: 29211846]
  85. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15927-32 [PMID: 17035501]
  86. Gene. 2006 Apr 26;371(2):224-33 [PMID: 16460889]
  87. J Lipid Res. 2014 Apr;55(4):635-44 [PMID: 24395925]
  88. Prog Lipid Res. 2014 Jul;55:1-16 [PMID: 24769127]
  89. Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1561-7 [PMID: 18647623]
  90. Nat Struct Biol. 2001 Mar;8(3):203-6 [PMID: 11224561]
  91. Biochim Biophys Acta. 2010 Sep;1804(9):1695-712 [PMID: 20433957]
  92. J Neurol Sci. 1993 Sep;118(2):181-7 [PMID: 8229067]
  93. Pharmaceutics. 2020 Nov 11;12(11): [PMID: 33187380]
  94. Antioxid Redox Signal. 2020 Nov 1;33(13):883-902 [PMID: 32475148]
  95. Pharm Res. 2011 Nov;28(11):2633-8 [PMID: 21935741]
  96. South Med J. 1991 Apr;84(4):496-7 [PMID: 2014436]
  97. Oxid Med Cell Longev. 2015;2015:140267 [PMID: 26078802]
  98. Biochim Biophys Acta. 2016 Jun;1857(6):772-81 [PMID: 26874054]
  99. Biochim Biophys Acta Bioenerg. 2017 Feb;1858(2):137-146 [PMID: 27836698]
  100. J Physiol Biochem. 2016 Sep;72(3):485-94 [PMID: 27312217]
  101. J Neuromuscul Dis. 2021;8(6):885-897 [PMID: 34308912]
  102. JMIR Res Protoc. 2021 May 31;10(5):e22533 [PMID: 34057417]
  103. Biochim Biophys Acta. 2008 Feb;1778(2):423-32 [PMID: 18054323]
  104. Biochimie. 2002 Feb-Mar;84(2-3):153-66 [PMID: 12022946]
  105. Chem Biol Interact. 2006 Oct 27;163(1-2):113-32 [PMID: 16814759]
  106. Science. 1991 Jun 21;252(5013):1682-9 [PMID: 2047877]
  107. Muscle Nerve. 2000 Jul;23(7):1069-75 [PMID: 10883001]
  108. J Cachexia Sarcopenia Muscle. 2020 Aug;11(4):909-918 [PMID: 32096613]
  109. Ann Neurol. 2022 Jan;91(1):117-130 [PMID: 34716721]
  110. DNA Repair (Amst). 2021 Nov;107:103212 [PMID: 34464898]
  111. Cells. 2019 Jul 16;8(7): [PMID: 31315173]
  112. Biochemistry. 2017 Mar 7;56(9):1227-1238 [PMID: 28206745]
  113. Childs Nerv Syst. 2020 Sep;36(9):2083-2088 [PMID: 32274529]
  114. Biochim Biophys Acta. 2009 May;1787(5):502-17 [PMID: 19210954]
  115. Redox Biol. 2018 Jun;16:352-358 [PMID: 29597144]
  116. J Neurochem. 2003 Mar;84(5):960-71 [PMID: 12603821]
  117. Circulation. 2004 Aug 3;110(5):637-41 [PMID: 15289389]
  118. Pediatr Neonatol. 2008 Aug;49(4):145-9 [PMID: 19054921]
  119. Curr Treat Options Neurol. 2009 Nov;11(6):414-30 [PMID: 19891905]
  120. Life (Basel). 2021 Mar 15;11(3): [PMID: 33804034]
  121. Mitochondrion. 2019 Jul;47:10-17 [PMID: 31009750]
  122. Arch Biochem Biophys. 2016 Feb 15;592:20-6 [PMID: 26619753]
  123. Nature. 2020 Dec;588(7836):174-179 [PMID: 32906142]
  124. Free Radic Biol Med. 1999 Jul;27(1-2):51-9 [PMID: 10443919]
  125. Nat Commun. 2016 Aug 09;7:12317 [PMID: 27502960]
  126. JIMD Rep. 2015;23:85-9 [PMID: 25854774]
  127. Cell. 1999 Apr 30;97(3):371-81 [PMID: 10319817]
  128. Cells. 2021 Oct 30;10(11): [PMID: 34831186]
  129. Curr Opin Neurol. 2019 Oct;32(5):715-721 [PMID: 31408013]
  130. Arch Biochem Biophys. 2011 Aug 15;512(2):183-9 [PMID: 21664341]
  131. Neurology. 2013 May 28;80(22):2049-54 [PMID: 23635963]
  132. N Engl J Med. 2009 Jul 30;361(5):489-95 [PMID: 19641205]
  133. Biochim Biophys Acta. 2016 Oct;1863(10):2394-412 [PMID: 27132995]
  134. Biochim Biophys Acta. 2015 Aug;1847(8):729-38 [PMID: 25917893]
  135. Orphanet J Rare Dis. 2021 Apr 12;16(1):170 [PMID: 33845862]
  136. Toxicology. 2021 Jan 15;447:152612 [PMID: 33171268]
  137. J Hum Genet. 2002;47(7):333-41 [PMID: 12111366]
  138. Sci Adv. 2020 Oct 21;6(43): [PMID: 33087354]
  139. Annu Rev Pathol. 2018 Jan 24;13:163-191 [PMID: 29099651]
  140. NPJ Genom Med. 2020 Mar 2;5:7 [PMID: 32140258]
  141. Oxid Med Cell Longev. 2013;2013:956792 [PMID: 23738047]
  142. N Engl J Med. 2021 Feb 4;384(5):403-416 [PMID: 33378609]
  143. Vitam Horm. 2022;119:405-439 [PMID: 35337628]
  144. Annu Rev Pharmacol Toxicol. 2018 Jan 6;58:583-601 [PMID: 28992429]
  145. Nat Struct Mol Biol. 2022 Feb;29(2):172-182 [PMID: 35145322]
  146. Brain. 2000 Jan;123 ( Pt 1):93-104 [PMID: 10611124]
  147. Antioxidants (Basel). 2020 Dec 28;10(1): [PMID: 33379309]
  148. Redox Biol. 2013 Dec 25;2:82-90 [PMID: 24494187]
  149. J Biol Chem. 2020 May 22;295(21):7452-7469 [PMID: 32273339]
  150. Nutr Clin Pract. 2012 Feb;27(1):41-50 [PMID: 22223666]
  151. Science. 2015 Sep 25;349(6255):1494-9 [PMID: 26404827]
  152. Arch Neurol. 2005 Mar;62(3):473-6 [PMID: 15767514]
  153. Lancet Neurol. 2021 Jul;20(7):573-584 [PMID: 34146515]
  154. Mol Biol (Mosk). 2019 Nov-Dec;53(6):924-932 [PMID: 31876273]
  155. Biochimie. 2017 Nov;142:102-111 [PMID: 28842204]
  156. Biochem J. 2009 Jan 1;417(1):1-13 [PMID: 19061483]
  157. Neurodegener Dis Manag. 2018 Aug;8(4):233-242 [PMID: 30051753]
  158. Biochim Biophys Acta. 2008 May;1782(5):317-25 [PMID: 18319067]
  159. J Am Heart Assoc. 2013 Oct 28;2(6):e000364 [PMID: 24166490]
  160. Front Cardiovasc Med. 2019 Nov 15;6:167 [PMID: 31803760]
  161. Brain Dev. 2006 Oct;28(9):576-81 [PMID: 16737791]
  162. J Neurosci. 2020 Jun 3;40(23):4609-4619 [PMID: 32350039]
  163. Nat Commun. 2020 Dec 1;11(1):6145 [PMID: 33262325]
  164. Brain Inj. 2017;31(11):1538-1547 [PMID: 28972396]
  165. J Hum Genet. 2018 May;63(5):563-568 [PMID: 29531337]
  166. Sci Rep. 2018 Apr 26;8(1):6577 [PMID: 29700325]
  167. Ann Neurol. 2016 Feb;79(2):190-203 [PMID: 26506407]
  168. Nature. 1991 Jul 18;352(6332):213-8 [PMID: 1857417]
  169. Antioxidants (Basel). 2021 Feb 04;10(2): [PMID: 33557229]
  170. Nucleic Acids Res. 2016 Feb 18;44(3):1428-39 [PMID: 26704982]
  171. Front Neurol. 2021 Jan 11;11:592104 [PMID: 33505346]
  172. Nat Commun. 2020 Aug 28;11(1):4269 [PMID: 32859890]
  173. J Neurol. 2014 Mar;261(3):504-10 [PMID: 24375076]
  174. Molecules. 2020 Jan 01;25(1): [PMID: 31906370]
  175. Nat Struct Biol. 2003 Jun;10(6):425-32 [PMID: 12754495]
  176. Cochrane Database Syst Rev. 2006 Jan 25;(1):CD004426 [PMID: 16437486]
  177. FASEB J. 2005 Oct;19(12):1657-67 [PMID: 16195374]
  178. Eur J Med Genet. 2018 Feb;61(2):100-103 [PMID: 28778788]
  179. Sleep Breath. 2013 Dec;17(4):1129-35 [PMID: 23389837]
  180. Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):544-57 [PMID: 25766847]
  181. Curr Med Chem. 2019;26(40):7104-7116 [PMID: 29745322]
  182. Biochem J. 1973 Jul;134(3):707-16 [PMID: 4749271]
  183. Food Nutr Res. 2012;56: [PMID: 22489217]
  184. EBioMedicine. 2021 Mar;65:103244 [PMID: 33647769]
  185. Pediatrics. 2013 May;131(5):e1670-5 [PMID: 23589815]
  186. Oxid Med Cell Longev. 2017;2017:5691215 [PMID: 28607632]
  187. Biochem Pharmacol. 2016 Jan 15;100:112-32 [PMID: 26616220]
  188. J Med Genet. 2004 Oct;41(10):784-9 [PMID: 15466014]
  189. Science. 2006 Oct 20;314(5798):471-4 [PMID: 17053148]
  190. Int J Mol Sci. 2015 Apr 24;16(5):9354-67 [PMID: 25918939]
  191. Muscle Nerve. 2006 Sep;34(3):265-83 [PMID: 16810684]
  192. Biochem J. 2014 Jul 15;461(2):305-14 [PMID: 24779955]
  193. Science. 2004 Jul 30;305(5684):626-9 [PMID: 15286356]
  194. J Neurol. 2015 Mar;262(3):701-10 [PMID: 25559684]
  195. Mitochondrion. 2004 Mar;3(4):229-44 [PMID: 16120357]
  196. Biology (Basel). 2019 May 11;8(2): [PMID: 31083546]
  197. J Mol Med (Berl). 2011 Feb;89(2):161-70 [PMID: 21079907]
  198. Genes Nutr. 2012 Oct;7(4):475-82 [PMID: 22354407]
  199. Nucleic Acids Res. 2015 Mar 11;43(5):2980-90 [PMID: 25722375]
  200. Curr Genomics. 2011 Aug;12(5):371-8 [PMID: 22294879]
  201. Antioxidants (Basel). 2020 May 05;9(5): [PMID: 32380795]
  202. Cell. 2000 Nov 22;103(5):793-803 [PMID: 11114335]
  203. Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1341-H1352 [PMID: 30095969]
  204. Front Mol Biosci. 2021 May 24;8:682191 [PMID: 34109217]
  205. Nucleic Acids Res. 2006 Jun 23;34(11):3246-58 [PMID: 16798914]
  206. J Neurol. 2020 May;267(5):1414-1419 [PMID: 31997039]
  207. Ann Neurol. 2001 Jan;49(1):106-10 [PMID: 11198278]
  208. J Inherit Metab Dis. 1987;10 Suppl 1:129-46 [PMID: 3119936]
  209. Exp Gerontol. 2017 Nov;98:99-109 [PMID: 28807823]
  210. Int J Mol Sci. 2019 Dec 09;20(24): [PMID: 31835305]
  211. Annu Rev Nutr. 2005;25:105-25 [PMID: 16011461]
  212. Annu Rev Pharmacol Toxicol. 2007;47:629-56 [PMID: 17014364]
  213. J Lipid Res. 2004 Apr;45(4):729-35 [PMID: 14703509]
  214. Mol Genet Metab. 2017 Nov;122(3):1-9 [PMID: 28943110]
  215. Biomolecules. 2020 Dec 30;11(1): [PMID: 33396658]
  216. Cell Mol Life Sci. 2014 Jan;71(2):349-64 [PMID: 23800987]
  217. Hum Mutat. 2020 Jan;41(1):110-114 [PMID: 31448845]
  218. Brain. 2007 Aug;130(Pt 8):2037-44 [PMID: 17412732]
  219. Rejuvenation Res. 2010 Apr-Jun;13(2-3):148-51 [PMID: 20370498]
  220. Nat Biotechnol. 2022 Mar;40(3):283-286 [PMID: 35210613]
  221. J Am Diet Assoc. 2003 Aug;103(8):1029-38 [PMID: 12891154]
  222. Plant Physiol Biochem. 2021 Jan;158:158-181 [PMID: 33250320]
  223. Sci Rep. 2015 May 27;5:10480 [PMID: 26014388]
  224. N Engl J Med. 2020 Dec 31;383(27):2603-2615 [PMID: 33301246]
  225. Proteins. 2008 Nov 1;73(2):351-61 [PMID: 18433064]
  226. Adv Drug Deliv Rev. 2020;154-155:187-209 [PMID: 32987095]
  227. Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1171-8 [PMID: 16781661]
  228. J Clin Med. 2019 Dec 02;8(12): [PMID: 31810296]
  229. Front Physiol. 2020 May 21;11:349 [PMID: 32508662]
  230. Cell Metab. 2020 Jun 2;31(6):1078-1090.e5 [PMID: 32386566]
  231. Brain. 2007 Aug;130(Pt 8):2045-54 [PMID: 17584774]
  232. Cell Rep. 2021 Apr 27;35(4):109031 [PMID: 33910001]
  233. Mitochondrion. 2007 Jun;7 Suppl:S136-45 [PMID: 17485245]
  234. Mol Genet Metab. 2011 Dec;104(4):501-6 [PMID: 21914561]
  235. J Biol Chem. 2019 Apr 5;294(14):5365-5385 [PMID: 30670594]
  236. J Inherit Metab Dis. 2020 Jul;43(4):800-818 [PMID: 32030781]
  237. Front Neurol. 2017 Jul 18;8:329 [PMID: 28769865]

MeSH Term

Anticonvulsants
Antioxidants
DNA, Mitochondrial
Humans
Mitochondria
Mitochondrial Diseases
Mitochondrial Proteins
Precision Medicine

Chemicals

Anticonvulsants
Antioxidants
DNA, Mitochondrial
Mitochondrial Proteins

Word Cloud

Created with Highcharts 10.0.0mitochondrialantioxidanttherapypatientscofactorsmutationsproteinsspecifictreatmentscocktailsMitochondrialdiseasesMDsaffectinggenesaffecteddiseaseadministrationrealclinicalsuccessantioxidantsMDwhosefunctiondependmighteffectstoxicityadministereddeficiencymayresultnuclearencodingnon-protein-codingRNADespitegreatvariabilityseverecasesneuromuscularneurodegenerativephenotypeobservedexistscompleterecoveryusedsymptomaticbasedcombinedantiepileptic/antipsychoticdrugssupportivemultiorganinvolvementNeverthelessutilitycocktailstillneedsscientificallydemonstratedUnfortunatelytrialstherapiesusingα-tocopherolascorbateglutathioneriboflavinniacinacetyl-carnitinecoenzymeQmetlimitedIndeedexpectedemployedcaneffectiveabletargetmechanismieinvolvingcentralperipheralnervoussystemresponsiblemanifestationsNoteworthilyoftenphenotypescharacterizingassociatedConverselydeterminesuppressionendogenousoxidantsresultingdeleteriouscellviabilityand/ororderavoidadministeringusefulascertainbloodserumlevelsalsoworthwhilechecklocalizationlessdirectlyestimatingneedpredictingproposedcofactor/antioxidant-basedPersonalizedMedicineHealthDisease:MolecularBasisTherapeuticApproachesBasedNutritionalSupplementsAnalogsCRATLeighsyndromeLeigh-likesyndromesMEGDELMELASMERRFSLC25A10DICaminoacyltRNAsynthetasecomplexdietarysupplementencephalomyopathiescarriersdysfunctionimpairmentpeptide-basedphospholipidstypeNADHdehydrogenasevitamins

Similar Articles

Cited By