Characterization of the Oxazinomycin Biosynthetic Pathway Revealing the Key Role of a Nonheme Iron-Dependent Mono-oxygenase.

Daan Ren, Yu-Hsuan Lee, Shao-An Wang, Hung-Wen Liu
Author Information
  1. Daan Ren: Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
  2. Yu-Hsuan Lee: Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
  3. Shao-An Wang: Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
  4. Hung-Wen Liu: Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States. ORCID

Abstract

Oxazinomycin is a -nucleoside natural product with antibacterial and antitumor activities. In addition to the characteristic -glycosidic linkage shared with other -nucleosides, oxazinomycin also features a structurally unusual 1,3-oxazine moiety, the biosynthesis of which had previously been unknown. Herein, complete in vitro reconstitution of the oxazinomycin biosynthetic pathway is described. Construction of the -glycosidic bond between ribose 5-phosphate and an oxygen-labile pyridine heterocycle is catalyzed by the -glycosidase OzmB and involves formation of an enzyme-substrate Schiff base intermediate. The DUF4243 family protein OzmD is shown to catalyze oxygen insertion and rearrangement of the pyridine -nucleoside intermediate to generate the 1,3-oxazine moiety along with the elimination of cyanide. Spectroscopic analysis and mutagenesis studies indicate that OzmD is a novel nonheme iron-dependent enzyme in which the catalytic iron center is likely coordinated by four histidine residues. These results provide the first example of 1,3-oxazine biosynthesis catalyzed by an unprecedented iron-dependent mono-oxygenase.

References

  1. iScience. 2019 Dec 20;22:430-440 [PMID: 31816530]
  2. Naturwissenschaften. 1977 Feb;64(2):97-8 [PMID: 840317]
  3. Nucleic Acids Res. 2019 Nov 4;47(19):10296-10312 [PMID: 31495891]
  4. J Am Chem Soc. 2021 Oct 13;143(40):16326-16331 [PMID: 34586791]
  5. Ann N Y Acad Sci. 1975 Aug 8;255:544-51 [PMID: 1059372]
  6. J Biol Inorg Chem. 2011 Feb;16(2):341-55 [PMID: 21153851]
  7. J Biol Chem. 1974 May 25;249(10):3183-6 [PMID: 4364417]
  8. Nat Commun. 2021 Dec 10;12(1):7205 [PMID: 34893622]
  9. Biochemistry. 1996 Jan 9;35(1):160-70 [PMID: 8555170]
  10. Biochemistry. 1981 Nov 24;20(24):7042-6 [PMID: 6119109]
  11. Biochim Biophys Acta. 1992 Apr 17;1120(3):239-47 [PMID: 1576149]
  12. Nat Commun. 2020 Dec 8;11(1):6270 [PMID: 33293530]
  13. Chem Commun (Camb). 2020 Jul 14;56(55):7617-7620 [PMID: 32515440]
  14. J Anal Toxicol. 2002 Apr;26(3):144-8 [PMID: 11991530]
  15. Arch Biochem Biophys. 2013 Nov 15;539(2):203-13 [PMID: 23827316]
  16. J Med Chem. 2016 Mar 24;59(6):2301-11 [PMID: 26513594]
  17. J Biol Chem. 1960 May;235:1488-98 [PMID: 13811056]
  18. J Am Chem Soc. 2020 Jun 24;142(25):10931-10935 [PMID: 32510939]
  19. Biochemistry. 1963 Nov-Dec;2:1192-203 [PMID: 14093887]
  20. Microb Cell Fact. 2022 Jan 4;21(1):2 [PMID: 34983520]
  21. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  22. Chem Rev. 2007 Dec;107(12):5416-70 [PMID: 18072802]
  23. Appl Environ Microbiol. 2020 Jan 7;86(2): [PMID: 31676476]
  24. Fortschr Chem Org Naturst. 1983;44:243-99 [PMID: 6360831]
  25. J Antibiot (Tokyo). 1977 Mar;30(3):272-3 [PMID: 863787]
  26. Nat Prod Rep. 2007 Jun;24(3):553-70 [PMID: 17534530]
  27. Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14324-14329 [PMID: 27911781]
  28. Cancer Res. 1968 Aug;28(8):1605-10 [PMID: 5691758]
  29. Chembiochem. 2020 Mar 2;21(5):644-649 [PMID: 31482654]
  30. Nat Struct Biol. 1997 Dec;4(12):1003-9 [PMID: 9406550]
  31. J Am Chem Soc. 2018 Jan 17;140(2):542-545 [PMID: 29232124]
  32. Biochemistry. 2012 Nov 13;51(45):9245-55 [PMID: 23066817]
  33. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16788-93 [PMID: 20837547]
  34. J Antibiot (Tokyo). 1972 Jan;25(1):44-7 [PMID: 5010645]
  35. Eur J Biochem. 1999 Aug;263(3):871-8 [PMID: 10469153]
  36. Angew Chem Int Ed Engl. 2021 Jul 26;60(31):17148-17154 [PMID: 34048627]
  37. FEBS Lett. 1977 Aug 1;80(1):53-6 [PMID: 891969]
  38. Chem Rev. 2004 Feb;104(2):939-86 [PMID: 14871146]
  39. J Antibiot (Tokyo). 1972 Mar;25(3):151-4 [PMID: 5034811]
  40. Science. 2005 Apr 8;308(5719):267-9 [PMID: 15821095]
  41. Angew Chem Int Ed Engl. 2019 Nov 11;58(46):16512-16516 [PMID: 31518483]
  42. Coord Chem Rev. 2013 Jan 15;257(2):541-563 [PMID: 24850951]
  43. Ann N Y Acad Sci. 1975 Aug 8;255:390-401 [PMID: 1059367]
  44. Biochemistry. 1971 Sep 14;10(19):3608-14 [PMID: 5146574]

Grants

  1. R01 GM040541/NIGMS NIH HHS

MeSH Term

Biosynthetic Pathways
Iron
Nucleosides
Oxazines
Oxygen
Oxygenases
Pyridines
Uridine

Chemicals

Nucleosides
Oxazines
Pyridines
minimycin
Iron
Oxygenases
Oxygen
Uridine

Word Cloud

Created with Highcharts 10.0.013-oxazineOxazinomycin-nucleoside-glycosidicoxazinomycinmoietybiosynthesispyridinecatalyzedintermediateOzmDiron-dependentnaturalproductantibacterialantitumoractivitiesadditioncharacteristiclinkageshared-nucleosidesalsofeaturesstructurallyunusualpreviouslyunknownHereincompletevitroreconstitutionbiosyntheticpathwaydescribedConstructionbondribose5-phosphateoxygen-labileheterocycle-glycosidaseOzmBinvolvesformationenzyme-substrateSchiffbaseDUF4243familyproteinshowncatalyzeoxygeninsertionrearrangementgeneratealongeliminationcyanideSpectroscopicanalysismutagenesisstudiesindicatenovelnonhemeenzymecatalyticironcenterlikelycoordinatedfourhistidineresiduesresultsprovidefirstexampleunprecedentedmono-oxygenaseCharacterizationBiosyntheticPathwayRevealingKeyRoleNonhemeIron-DependentMono-oxygenase

Similar Articles

Cited By