Abnormal sensory perception masks behavioral performance of Grin1 knockdown mice.

Tatiana Lipina, Xiaoyu Men, Matisse Blundell, Ali Salahpour, Amy J Ramsey
Author Information
  1. Tatiana Lipina: Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada. ORCID
  2. Xiaoyu Men: Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada. ORCID
  3. Matisse Blundell: Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
  4. Ali Salahpour: Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.
  5. Amy J Ramsey: Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.

Abstract

The development and function of sensory systems require intact glutamatergic neurotransmission. Changes in touch sensation and vision are common symptoms in autism spectrum disorders, where altered glutamatergic neurotransmission is strongly implicated. Further, cortical visual impairment is a frequent symptom of GRIN disorder, a rare genetic neurodevelopmental disorder caused by pathogenic variants of GRIN genes that encode NMDA receptors. We asked if Grin1 knockdown mice (Grin1KD), as a model of GRIN disorder, had visual impairments resulting from NMDA receptor deficiency. We discovered that Grin1KD mice had deficient visual depth perception in the visual cliff test. Since Grin1KD mice are known to display robust changes in measures of learning, memory, and emotionality, we asked whether deficits in these higher-level processes could be partly explained by their visual impairment. By changing the experimental conditions to improve visual signals, we observed significant improvements in the performance of Grin1KD mice in tests that measure spatial memory, executive function, and anxiety. We went further and found destabilization of the outer segment of retina together with the deficient number and size of Meissner corpuscles (mechanical sensor) in the hind paw of Grin1KD mice. Overall, our findings suggest that abnormal sensory perception can mask the expression of emotional, motivational and cognitive behavior of Grin1KD mice. This study demonstrates new methods to adapt routine behavioral paradigms to reveal the contribution of vision and other sensory modalities in cognitive performance.

Keywords

References

  1. Neurosci Lett. 2014 Jan 13;558:149-53 [PMID: 24246903]
  2. Annu Rev Pharmacol Toxicol. 2002;42:165-79 [PMID: 11807169]
  3. Invest Ophthalmol Vis Sci. 2004 Dec;45(12):4611-6 [PMID: 15557474]
  4. Pharmacol Rev. 2010 Sep;62(3):405-96 [PMID: 20716669]
  5. Invest Ophthalmol Vis Sci. 2012 Aug 31;53(9):5956-66 [PMID: 22859742]
  6. J Neurosci. 2005 Mar 2;25(9):2304-11 [PMID: 15745956]
  7. Hum Mol Genet. 2002 Mar 1;11(5):487-98 [PMID: 11875043]
  8. Biol Psychiatry. 2000 Dec 1;48(11):1105-8 [PMID: 11094144]
  9. J Neurosci Res. 2021 Sep;99(9):2046-2058 [PMID: 34048600]
  10. eNeuro. 2016 Jun 09;3(3): [PMID: 27294197]
  11. Neurosci Biobehav Rev. 2018 Mar;86:66-76 [PMID: 29317216]
  12. Behav Brain Res. 2004 Aug 31;153(2):507-19 [PMID: 15265649]
  13. Front Psychiatry. 2019 Nov 11;10:753 [PMID: 31780959]
  14. J Med Genet. 2017 Jul;54(7):460-470 [PMID: 28377535]
  15. NPJ Schizophr. 2017 Mar 22;3:12 [PMID: 28560258]
  16. Somatosens Mot Res. 2017 Sep;34(3):172-178 [PMID: 28891404]
  17. Trends Pharmacol Sci. 2016 Sep;37(9):750-767 [PMID: 27338838]
  18. Nat Commun. 2017 May 23;8:15488 [PMID: 28534484]
  19. Expert Rev Neurother. 2019 Mar;19(3):211-225 [PMID: 30741038]
  20. Pharmacol Biochem Behav. 2009 Feb;91(4):610-20 [PMID: 18940194]
  21. Mol Vis. 2009;15:713-21 [PMID: 19365572]
  22. Front Behav Neurosci. 2019 Oct 02;13:228 [PMID: 31680892]
  23. Trends Neurosci. 2001 Oct;24(10):578-81 [PMID: 11576671]
  24. Nat Neurosci. 2012 Jul 15;15(8):1153-9 [PMID: 22797694]
  25. Genes Brain Behav. 2012 Apr;11(3):342-51 [PMID: 22300668]
  26. Nat Rev Neurosci. 2017 Nov;18(11):671-684 [PMID: 28951611]
  27. Neurosci Biobehav Rev. 2018 Dec;95:220-234 [PMID: 30287245]
  28. Curr Mol Med. 2015;15(2):146-67 [PMID: 25732149]
  29. Neuropsychopharmacology. 2016 Mar;41(4):1080-92 [PMID: 26272049]
  30. Cell. 1999 Aug 20;98(4):427-36 [PMID: 10481908]
  31. Neurosci Biobehav Rev. 1998;22(1):33-57 [PMID: 9491939]
  32. Ann Neurol. 2014 Jan;75(1):147-54 [PMID: 24272827]
  33. J Neurosci Methods. 2020 Feb 1;331:108532 [PMID: 31785300]
  34. Sci Rep. 2020 Nov 12;10(1):19683 [PMID: 33184471]
  35. Prog Brain Res. 2009;179:51-8 [PMID: 20302817]
  36. Genes Brain Behav. 2009 Oct;8(7):661-75 [PMID: 19563516]
  37. Autism Res. 2012 Oct;5(5):340-51 [PMID: 22933354]
  38. Am J Occup Ther. 2007 Mar-Apr;61(2):190-200 [PMID: 17436841]
  39. Genes Brain Behav. 2022 Jul;21(6):e12825 [PMID: 35705513]
  40. J Neurodev Disord. 2013 Sep 24;5(1):26 [PMID: 24063566]
  41. PLoS One. 2014 Aug 25;9(8):e105996 [PMID: 25153086]
  42. Neuron. 1997 Oct;19(4):755-9 [PMID: 9354323]
  43. Neurobiol Dis. 2019 Dec;132:104527 [PMID: 31299220]
  44. Curr Biol. 2015 Jul 20;25(14):1904-10 [PMID: 26144969]
  45. Hum Mol Genet. 2003 Oct 1;12(19):2431-48 [PMID: 12915444]
  46. Neuroscience. 2019 Oct 15;418:177-188 [PMID: 31473278]
  47. Nat Protoc. 2006;1(1):122-4 [PMID: 17406223]
  48. Pharmacol Biochem Behav. 2012 Feb;100(4):850-4 [PMID: 21315104]
  49. Neuropsychopharmacology. 2008 Apr;33(5):1004-18 [PMID: 17625504]
  50. Behav Brain Res. 2008 Mar 17;188(1):178-94 [PMID: 18068825]
  51. Mamm Genome. 2001 Jul;12(7):501-7 [PMID: 11420611]
  52. J Neurosci. 2014 Sep 3;34(36):12001-14 [PMID: 25186746]
  53. Mol Psychiatry. 2021 Jul;26(7):2929-2942 [PMID: 32807843]
  54. Cell. 2019 Aug 8;178(4):867-886.e24 [PMID: 31398341]
  55. Front Aging Neurosci. 2013 Sep 18;5:52 [PMID: 24065919]
  56. Genes Brain Behav. 2014 Nov;13(8):850-62 [PMID: 25327402]
  57. Learn Mem. 2007 Mar 08;14(3):134-44 [PMID: 17351136]
  58. Neuropharmacology. 2021 Nov 1;199:108805 [PMID: 34560056]
  59. Schizophr Bull. 1987;13(4):669-78 [PMID: 2894074]
  60. Vision Res. 2009 Nov;49(22):2705-39 [PMID: 19682485]
  61. Neurology. 2016 Jun 7;86(23):2171-8 [PMID: 27164704]
  62. J Autism Dev Disord. 2012 Jul;42(7):1419-24 [PMID: 22006402]
  63. Pharmacol Biochem Behav. 1996 May;54(1):21-30 [PMID: 8728535]
  64. Neuropsychopharmacology. 1999 Mar;20(3):201-25 [PMID: 10063482]
  65. Nat Genet. 2011 Jun;43(6):585-9 [PMID: 21572417]
  66. Can J Neurol Sci. 2020 Jan;47(1):139-141 [PMID: 31724524]
  67. Hum Mutat. 2021 Jan;42(1):8-18 [PMID: 33252190]
  68. J Cogn Neurosci. 2003 Feb 15;15(2):226-35 [PMID: 12676060]
  69. J Comp Neurol. 2005 Apr 25;485(1):57-63 [PMID: 15776442]
  70. Schizophr Bull. 2009 Nov;35(6):1117-31 [PMID: 19793796]
  71. J Neurophysiol. 2014 May;111(9):1803-11 [PMID: 24523518]
  72. Curr Eye Res. 2012 Mar;37(3):170-8 [PMID: 22335803]
  73. Neuropharmacology. 2016 Nov;110(Pt B):626-632 [PMID: 26407763]
  74. N Engl J Med. 2012 Nov 15;367(20):1921-9 [PMID: 23033978]
  75. Genes Brain Behav. 2012 Aug;11(6):740-50 [PMID: 22726567]
  76. Exp Neurol. 2011 Jan;227(1):42-52 [PMID: 20851119]
  77. J Neurosci. 2021 Feb 10;41(6):1207-1217 [PMID: 33372060]
  78. Front Syst Neurosci. 2019 Aug 21;13:40 [PMID: 31496942]
  79. Curr Opin Neurobiol. 2009 Jun;19(3):298-304 [PMID: 19540104]
  80. Neurosci Biobehav Rev. 2015 Aug;55:173-83 [PMID: 25956249]
  81. Genes Brain Behav. 2006 Jul;5(5):389-403 [PMID: 16879633]
  82. Cell Rep. 2019 Dec 24;29(13):4285-4294.e5 [PMID: 31875540]
  83. Behav Brain Res. 2014 Oct 15;273:116-22 [PMID: 25078295]
  84. Curr Opin Pharmacol. 2015 Feb;20:73-82 [PMID: 25498981]
  85. Pharmacol Biochem Behav. 1995 Oct;52(2):297-303 [PMID: 8577794]
  86. Brain. 2020 Apr 1;143(4):1046-1048 [PMID: 32318731]
  87. Front Neuroanat. 2021 Mar 02;15:628711 [PMID: 33737870]
  88. BMC Res Notes. 2013 May 21;6:203 [PMID: 23688147]
  89. Behav Brain Res. 2018 Oct 15;352:172-182 [PMID: 28760697]
  90. Annu Rev Anim Biosci. 2017 Feb 8;5:371-389 [PMID: 28199172]
  91. J Autism Dev Disord. 2013 Dec;43(12):2891-902 [PMID: 23624833]
  92. Neuropsychopharmacology. 2010 Jan;35(1):258-77 [PMID: 19693005]
  93. Neuropsychologia. 2017 May;99:128-138 [PMID: 28263800]
  94. PLoS Genet. 2011 Feb;7(2):e1001318 [PMID: 21383861]
  95. Schizophr Res. 2017 Jan;179:97-103 [PMID: 27746052]
  96. ILAR J. 2014;55(2):310-32 [PMID: 25225309]

MeSH Term

Animals
Behavior, Animal
Exploratory Behavior
Masks
Maze Learning
Mice
Perception
Receptors, N-Methyl-D-Aspartate

Chemicals

Receptors, N-Methyl-D-Aspartate

Word Cloud

Created with Highcharts 10.0.0micevisualGrin1KDsensoryfunctionvisionGRINdisorderperceptionmemoryperformanceglutamatergicneurotransmissionautismimpairmentNMDAaskedGrin1knockdowndeficientlearninganxietycognitivebehavioralmazedevelopmentsystemsrequireintactChangestouchsensationcommonsymptomsspectrumdisordersalteredstronglyimplicatedcorticalfrequentsymptomraregeneticneurodevelopmentalcausedpathogenicvariantsgenesencodereceptorsmodelimpairmentsresultingreceptordeficiencydiscovereddepthclifftestSinceknowndisplayrobustchangesmeasuresemotionalitywhetherdeficitshigher-levelprocessespartlyexplainedchangingexperimentalconditionsimprovesignalsobservedsignificantimprovementstestsmeasurespatialexecutivewentfounddestabilizationoutersegmentretinatogethernumbersizeMeissnercorpusclesmechanicalsensorhindpawOverallfindingssuggestabnormalcanmaskexpressionemotionalmotivationalbehaviorstudydemonstratesnewmethodsadaptroutineparadigmsrevealcontributionmodalitiesAbnormalmasksGRIN1Morriswaterelevatedplus&puzzleboxschizophreniatactile

Similar Articles

Cited By