Disentangling the genetic basis of rhizosphere microbiome assembly in tomato.

Ben O Oyserman, Stalin Sarango Flores, Thom Griffioen, Xinya Pan, Elmar van der Wijk, Lotte Pronk, Wouter Lokhorst, Azkia Nurfikari, Joseph N Paulson, Mercedeh Movassagh, Nejc Stopnisek, Anne Kupczok, Viviane Cordovez, V��ctor J Carri��n, Wilco Ligterink, Basten L Snoek, Marnix H Medema, Jos M Raaijmakers
Author Information
  1. Ben O Oyserman: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands. benoyserman@gmail.com. ORCID
  2. Stalin Sarango Flores: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
  3. Thom Griffioen: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands. ORCID
  4. Xinya Pan: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
  5. Elmar van der Wijk: Bioinformatics Group, Wageningen University, Wageningen, The Netherlands. ORCID
  6. Lotte Pronk: Bioinformatics Group, Wageningen University, Wageningen, The Netherlands. ORCID
  7. Wouter Lokhorst: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands. ORCID
  8. Azkia Nurfikari: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands. ORCID
  9. Joseph N Paulson: Department of Data Sciences, Genentech, Inc. South San Francisco, South San Francisco, CA, USA. ORCID
  10. Mercedeh Movassagh: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
  11. Nejc Stopnisek: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands. ORCID
  12. Anne Kupczok: Bioinformatics Group, Wageningen University, Wageningen, The Netherlands. ORCID
  13. Viviane Cordovez: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
  14. V��ctor J Carri��n: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands. ORCID
  15. Wilco Ligterink: Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands. ORCID
  16. Basten L Snoek: Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands. ORCID
  17. Marnix H Medema: Bioinformatics Group, Wageningen University, Wageningen, The Netherlands. ORCID
  18. Jos M Raaijmakers: Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands. j.raaijmakers@nioo.knaw.nl. ORCID

Abstract

Microbiomes play a pivotal role in plant growth and health, but the genetic factors involved in microbiome assembly remain largely elusive. Here, we map the molecular features of the rhizosphere microbiome as quantitative traits of a diverse hybrid population of wild and domesticated tomato. Gene content analysis of prioritized tomato quantitative trait loci suggests a genetic basis for differential recruitment of various rhizobacterial lineages, including a Streptomyces-associated 6.31���Mbp region harboring tomato domestication sweeps and encoding, among others, the iron regulator FIT and the water channel aquaporin SlTIP2.3. Within metagenome-assembled genomes of root-associated Streptomyces and Cellvibrio, we identify bacterial genes involved in metabolism of plant polysaccharides, iron, sulfur, trehalose, and vitamins, whose genetic variation associates with specific tomato QTLs. By integrating 'microbiomics' and quantitative plant genetics, we pinpoint putative plant and reciprocal rhizobacterial traits underlying microbiome assembly, thereby providing a first step towards plant-microbiome breeding programs.

References

  1. Front Microbiol. 2016 Dec 07;7:1971 [PMID: 28003808]
  2. Sci Rep. 2019 Feb 11;9(1):1792 [PMID: 30741989]
  3. Curr Opin Microbiol. 2018 Jun;43:46-54 [PMID: 29207308]
  4. Annu Rev Microbiol. 2017 Sep 8;71:479-497 [PMID: 28886679]
  5. Nature. 2012 May 30;485(7400):635-41 [PMID: 22660326]
  6. Bioinformatics. 2018 Jul 1;34(13):i142-i150 [PMID: 29949969]
  7. Front Mol Biosci. 2021 Jun 16;8:686110 [PMID: 34222338]
  8. Metabolites. 2021 Jun 09;11(6): [PMID: 34207663]
  9. Genome Biol. 2007;8(9):R179 [PMID: 17784941]
  10. Sci Rep. 2020 Oct 29;10(1):18691 [PMID: 33122638]
  11. PeerJ. 2019 Jul 26;7:e7359 [PMID: 31388474]
  12. Genetics. 2012 Nov;192(3):1123-32 [PMID: 22942125]
  13. New Phytol. 2012 Mar;193(4):997-1008 [PMID: 22187939]
  14. Nat Biotechnol. 2017 Nov;35(11):1026-1028 [PMID: 29035372]
  15. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  16. Environ Microbiol. 2017 Dec;19(12):5025-5039 [PMID: 29052930]
  17. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  18. Front Microbiol. 2021 Jan 12;11:574053 [PMID: 33584558]
  19. PLoS One. 2013 Nov 19;8(11):e79052 [PMID: 24260152]
  20. Curr Opin Biotechnol. 2021 Aug;70:167-173 [PMID: 34126329]
  21. Mol Microbiol. 2014 Oct 8;: [PMID: 25294408]
  22. J Exp Bot. 2020 Mar 12;71(5):1694-1705 [PMID: 31922570]
  23. Nat Microbiol. 2020 Aug;5(8):1002-1010 [PMID: 32393858]
  24. Nucleic Acids Res. 2020 Sep 18;48(16):8883-8900 [PMID: 32766782]
  25. Chembiochem. 2016 Feb 2;17(3):247-53 [PMID: 26629877]
  26. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  27. New Phytol. 2009;181(3):651-61 [PMID: 19054338]
  28. PLoS One. 2013;8(2):e55731 [PMID: 23383346]
  29. Front Plant Sci. 2018 Mar 27;9:340 [PMID: 29636757]
  30. Genetics. 2019 Feb;211(2):495-502 [PMID: 30591514]
  31. Mol Plant Microbe Interact. 1996 Jul;9(5):330-8 [PMID: 8672815]
  32. Plant Cell. 2017 Sep;29(9):2249-2268 [PMID: 28814642]
  33. PLoS One. 2012;7(10):e48479 [PMID: 23119032]
  34. ISME J. 2021 Aug;15(8):2454-2464 [PMID: 33692487]
  35. Trends Plant Sci. 2018 Jan;23(1):25-41 [PMID: 29050989]
  36. Biology (Basel). 2012 Dec 14;1(3):895-905 [PMID: 24832523]
  37. Nat Commun. 2014 Nov 10;5:5320 [PMID: 25382143]
  38. BMC Bioinformatics. 2012 Feb 14;13:31 [PMID: 22333067]
  39. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  40. J Genet Genomics. 2021 Sep 20;48(9):844-850 [PMID: 34001434]
  41. Front Plant Sci. 2019 Feb 21;10:157 [PMID: 30881364]
  42. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30): [PMID: 34285069]
  43. Methods. 2016 Jun 1;102:3-11 [PMID: 27012178]
  44. F1000Res. 2016 Jan 29;5: [PMID: 26918182]
  45. Nature. 2020 Nov;587(7832):103-108 [PMID: 32999461]
  46. Plant Cell Environ. 2019 Jan;42(1):20-40 [PMID: 29645277]
  47. J Exp Bot. 2012 Jan;63(2):551-65 [PMID: 22090441]
  48. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  49. New Phytol. 2012 Oct;196(1):29-48 [PMID: 22889076]
  50. Front Plant Sci. 2018 Feb 22;9:114 [PMID: 29520283]
  51. New Phytol. 2020 Jun;226(5):1341-1360 [PMID: 31943222]
  52. Nat Methods. 2013 Dec;10(12):1200-2 [PMID: 24076764]
  53. ISME J. 2021 Nov;15(11):3181-3194 [PMID: 33980999]
  54. Plant J. 2014 Aug;79(4):544-67 [PMID: 24645920]
  55. Nature. 2002 May 9;417(6885):141-7 [PMID: 12000953]
  56. Int J Biol Macromol. 1995 Dec;17(6):353-5 [PMID: 8789339]
  57. Theor Appl Genet. 2019 Feb;132(2):531-541 [PMID: 30470858]
  58. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  59. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 [PMID: 24288368]
  60. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  61. PLoS Biol. 2017 Mar 28;15(3):e2001793 [PMID: 28350798]
  62. PLoS Comput Biol. 2018 Jan 26;14(1):e1005944 [PMID: 29373581]
  63. Science. 2019 Nov 1;366(6465):606-612 [PMID: 31672892]
  64. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 [PMID: 22645317]
  65. Nat Commun. 2021 Jun 11;12(1):3562 [PMID: 34117246]
  66. Theor Appl Genet. 2023 Feb 22;136(2):28 [PMID: 36810666]
  67. Nat Biotechnol. 2021 Jun;39(6):727-736 [PMID: 33462508]
  68. Mol Plant Microbe Interact. 2006 Mar;19(3):250-6 [PMID: 16570655]
  69. PLoS One. 2020 Apr 9;15(4):e0231144 [PMID: 32271818]
  70. mSystems. 2021 Jun 29;6(3):e0111620 [PMID: 34100635]
  71. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13938-43 [PMID: 12370409]
  72. Genome Res. 2021 Feb;31(2):239-250 [PMID: 33361114]
  73. Nat Commun. 2021 May 28;12(1):3209 [PMID: 34050180]
  74. Plant J. 2019 Jan;97(1):164-181 [PMID: 30466152]
  75. Sci Rep. 2019 Jan 10;9(1):24 [PMID: 30631088]
  76. PLoS One. 2012;7(8):e43991 [PMID: 22952841]
  77. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1621-30 [PMID: 23569226]
  78. Front Plant Sci. 2017 Apr 19;8:595 [PMID: 28469632]
  79. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  80. ISME J. 2021 Feb;15(2):397-408 [PMID: 32973341]
  81. Microbiome. 2018 Aug 16;6(1):143 [PMID: 30115122]
  82. Front Plant Sci. 2016 Nov 09;7:1671 [PMID: 27881988]
  83. Biotechnol Biofuels. 2018 Feb 17;11:45 [PMID: 29467823]
  84. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  85. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  86. Appl Microbiol Biotechnol. 2005 Jun;67(5):577-91 [PMID: 15944805]
  87. Nature. 2012 Aug 2;488(7409):86-90 [PMID: 22859206]
  88. Front Plant Sci. 2020 Jan 17;10:1702 [PMID: 32038679]
  89. Nat Genet. 2014 Nov;46(11):1220-6 [PMID: 25305757]
  90. Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35 [PMID: 33978755]
  91. Nature. 2017 Apr 26;544(7651):S8-S10 [PMID: 28445449]
  92. PeerJ. 2015 Aug 27;3:e1165 [PMID: 26336640]

Grants

  1. U01 GM110706/NIGMS NIH HHS

MeSH Term

Iron
Solanum lycopersicum
Microbiota
Plant Breeding
Plants
Rhizosphere

Chemicals

Iron

Word Cloud

Created with Highcharts 10.0.0tomatoplantgeneticmicrobiomeassemblyquantitativeinvolvedrhizospheretraitsbasisrhizobacterialironMicrobiomesplaypivotalrolegrowthhealthfactorsremainlargelyelusivemapmolecularfeaturesdiversehybridpopulationwilddomesticatedGenecontentanalysisprioritizedtraitlocisuggestsdifferentialrecruitmentvariouslineagesincludingStreptomyces-associated631���MbpregionharboringdomesticationsweepsencodingamongothersregulatorFITwaterchannelaquaporinSlTIP23Withinmetagenome-assembledgenomesroot-associatedStreptomycesCellvibrioidentifybacterialgenesmetabolismpolysaccharidessulfurtrehalosevitaminswhosevariationassociatesspecificQTLsintegrating'microbiomics'geneticspinpointputativereciprocalunderlyingtherebyprovidingfirststeptowardsplant-microbiomebreedingprogramsDisentangling

Similar Articles

Cited By