Testing the memory reconsolidation hypothesis in a fear extinction paradigm: The effects of ecological and arbitrary stimuli.

Seda Dural, Ezgi Gür, Hakan Çetinkaya
Author Information
  1. Seda Dural: Department of Psychology, Izmir University of Economics, Izmir, Turkey. ORCID
  2. Ezgi Gür: Department of Biological Sciences, University of Manitoba, Winnipeg, Canada.
  3. Hakan Çetinkaya: Department of Psychology, Yaşar University, 35100 Bornova, İzmir, Turkey. hakan.cetinkaya@yasar.edu.tr.

Abstract

Various studies demonstrated that extinction training taking place shortly after the activation of the acquired fear could weaken the conditioned fear. The procedure is called post-retrieval extinction (PRE). However, from the time it emerged, it has suffered from inconsistencies in the ability of researchers to replicate the seemingly established effects. Extant literature implies that conditioned fear might be differentially sensitive to the nature of conditioned stimuli (CS) used. The aim of the present study, therefore, is threefold. First, we aimed to replicate Schiller et al. (Nature, 463, 49-53. 2010) procedure in which the PRE had produced positive results with arbitrary CSs only. Also, we examined the PRE as a function of CS type (ecological-fear-relevant (images of spider and snake) vs. arbitrary (images of yellow and blue circles)). Finally, we aimed to investigate the long-term effects of the PRE (i.e., 24 h, 15 d, and 3 mo). The study consisted of acquisition, re-activation and extinction, and re-extinction phases. Dependent measure was the recovery of fear responses as indexed by the skin conductance responses (SCRs) and arousal ratings of the participants at the last trial of the extinction and the first trial of the re-extinction. All groups showed significant acquisition and extinction patterns, compared to the other two groups (i.e., 6 h after the activating CS and without an activating stimulus) only the group that undertook extinction trials 10 min after the activating CS showed a sustained extinction. Thus, our findings provided further evidence for the robustness of the PRE paradigm in preventing the recovery of extinguished fears behaviorally, both with ecological and arbitrary stimuli.

Keywords

References

  1. Agren, T., Engman, J., Frick, A., Björkstrand, J., Larsson, E. M., Furmark, T., & Fredrikson, M. (2012a). Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science, 337, 1150–1552. [DOI: 10.1126/science.1223006]
  2. Agren, T., Furmark, T., Eriksson, E., & Fredrikson, M. (2012b). Human fear reconsolidation and allelic differences in serotonergic and dopaminergic genes. Translational Psychiatry, 2(2), e76–e76. [PMID: 22832813]
  3. Asthana, M. K., Brunhuber, B., Mühlberger, A., Reif, A., Schneider, S., & Herrmann, M. J. (2015). Preventing the return of fear using reconsolidation update mechanisms depends on the met-allele of the brain derived neurotrophic factor Val66Met polymorphism. International Journal of Neuropsychopharmacology. https://doi.org/10.1093/ijnp/pyv137
  4. Auber, A., Tedesco, V., Jones, C. E., Monfils, M. H., & Chiamulera, C. (2013). Post-retrieval extinction as reconsolidation interference: Methodological issues or boundary conditions? Psychopharmacology, 226(4), 631–647. [PMID: 23404065]
  5. Auchter, A., Shumake, J., Gonzalez-Lima, F., et al. (2017). Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning. Scientific Reports, 7, 46071. https://doi.org/10.1038/srep46071 [DOI: 10.1038/srep46071]
  6. Bandarian Balooch, S., & Neumann, D. L. (2011). Effects of multiple contexts and context similarity on the renewal of extinguished conditioned behavior in an ABA design with humans. Learning and Motivation, 42, 53–63. https://doi.org/10.1016/j.lmot.2010.08.008 [DOI: 10.1016/j.lmot.2010.08.008]
  7. Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115–1118. [PMID: 7652558]
  8. Björkstrand, J., Agren, T., Åhs, F., Frick, A., Larsson, E.-M., Hjorth, O., Furmark, T., & Fredrikson, M. (2016). Disrupting reconsolidation attenuates long-term fear memory in the human amygdala and facilitates approach behavior. Current Biology, 26, 2690–2695. https://doi.org/10.1016/j.cub.2016.08.022 [DOI: 10.1016/j.cub.2016.08.022]
  9. Björkstrand, J., Agren, T., Frick, A., Engman, J., Larsson, E. M., Furmark, T., & Fredrikson, M. (2015). Disruption of memory reconsolidation erases a fear memory trace in the human amygdala: An 18-month follow up. PloS One., 10, e0129393. [PMID: 26132145]
  10. Bouton, M. E. (1988). Context and ambiguity in the extinction of emotional learning: Implications for exposure therapy. Behavior Research and Therapy, 26(2), 137–149. [DOI: 10.1016/0005-7967(88)90113-1]
  11. Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114, 80–99. https://doi.org/10.1037/0033-2909.114.1.80 [DOI: 10.1037/0033-2909.114.1.80]
  12. Bouton, M. E. (2002). Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biological Psychiatry, 52, 976–986. https://doi.org/10.1016/S0006-3223(02)01546-9 [DOI: 10.1016/S0006-3223(02)01546-9]
  13. Bouton, M. E. (2014). Why behavior change is difficult to sustain. Preventive Medicine, 68, 29–36. https://doi.org/10.1016/j.ypmed.2014.06.010 [DOI: 10.1016/j.ypmed.2014.06.010]
  14. Bouton, M. E., & Woods, A. M. (2008). Extinction: Behavioral mechanisms and their implications. In J. H. Byrne (Ed.), Learning theory and behavior, Learning and memory: A comprehensive reference (Vol. 1, pp. 151–172). Elsevier.
  15. Çetinkaya, H. (2018). Naturalistic stimuli. In J. Vonk, T. Shackelford (Eds.), Encyclopedia of animal cognition and behavior. Springer.  https://doi.org/10.1007/978-3-319-47829-6_2019-1
  16. Chan, W. Y., Leung, H. T., Westbrook, R. F., & McNally, G. P. (2010). Effects of recent exposure to a conditioned stimulus on extinction of Pavlovian fear conditioning. Learning and Memory. 30, 17(10), 512-21. https://doi.org/10.1101/lm.1912510
  17. Chen, W., Li, J., Xu, L., Zhao, S., Fan, M., & Zheng, X. (2021). Destabilizing different strengths of fear memories requires different degrees of prediction error during retrieval. Frontiers in Behavioral Neuroscience, 14, 598924. https://doi.org/10.3389/fnbeh.2020.598924 [DOI: 10.3389/fnbeh.2020.598924]
  18. Chen, Y., Lin, X., Ai, S., Sun, Y., Shi, L., Meng, S., Lu, L., & Shi, J. (2022). Comparing three extinction methods to reduce fear expression and generalization. Behavioural Brain Research, 420, 113714. [PMID: 34906608]
  19. Cook, M., & Mineka, S. (1987). Second-order conditioning and overshadowing in the observational conditioning of fear in monkeys. Behaviour Research and Therapy, 25(5), 349–364. https://doi.org/10.1016/0005-7967(87)90013-1 [DOI: 10.1016/0005-7967(87)90013-1]
  20. Craske, M. G., Hermans, D., & Vervliet, B. (2018). State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philosophical Transactions of the Royal Society B, 373, 20170025. https://doi.org/10.1098/rstb.2017.0025 [DOI: 10.1098/rstb.2017.0025]
  21. Craske, M. G., Treanor, M., Conway, C. C., Zbozinek, T., & Vervliet, B. (2014). Maximizing exposure therapy: an inhibitory learning approach. Behaviour Research and Therapy, 58, 10–23. [PMID: 24864005]
  22. Cusato, B., & Domjan, M. (1998). Special efficacy of sexual conditioned stimuli that include species typical cues: Tests with a conditioned stimuli preexposure design. Learning and Motivation, 29(2), 152–167. https://doi.org/ https://doi.org/10.1006/lmot.1997.0988
  23. Delamater, A. R. (2004). Experimental extinction in Pavlovian conditioning: Behavioural and neuroscience perspectives. Quarterly Journal of Experimental Psychology, 57, 97–132. [DOI: 10.1080/02724990344000097]
  24. Delgado, M. R., Olsson, A., & Phelps, E. A. (2006). Extending animal models of fear conditioning to humans. Biological Psychology, 73, 39–48. [PMID: 16472906]
  25. Dirikx, T., Hermans, D., Vansteenwegen, D., Baeyens, F., & Eelen, P. (2004). Reinstatement of extinguished conditioned responses and negative stimulus valence as a pathway to return of fear in humans. Learning & Memory, 11(5), 549–554. [DOI: 10.1101/lm.78004]
  26. Domjan, M. (1994). Formulation of a behavior system for sexual conditioning. Psychonomic bulletin & review, 1, 421–428. https://doi.org/10.3758/BF03210946 [DOI: 10.3758/BF03210946]
  27. Domjan, M. (2000). General process learning theory: Challenges from response and stimulus factors. International Journal of Comparative Psychology, 13, 101–118.
  28. Domjan, M. (2005). Pavlovian conditioning: A functional perspective. Annual Review of Psychology, 56, 179–206. [PMID: 15709933]
  29. Domjan, M. (2008). Adaptive specializations and generality of the laws of classical and instrumental conditioning. In J. Byrne (Ed.) Learning and Memory: A comprehensive reference. (Vol. 1, Learning and Behavior Theory, R. Menzel, Ed., pp. 327-340.) Oxford: Elsevier. https://doi.org/10.1016/B978-012370509-9.00183-2
  30. Domjan, M. (2018). The essentials of conditioning and learning. American Psychological Association. [DOI: 10.1037/0000057-000]
  31. Domjan, M., & Galef, B. G. (1983). Biological constraints on instrumental and classical conditioning: Retrospect and prospect. Animal Learning & Behavior, 11, 151–161. [DOI: 10.3758/BF03199643]
  32. Domjan, M., & Krause, M. (2017). Generality of the laws of learning: From biological constraints to ecological perspectives. In J. Byrne (Ed.), Learning and Memory: A Comprehensive Reference (Second ed., pp. 189–201). Academic Press. [DOI: 10.1016/B978-0-12-809324-5.21012-2]
  33. Domjan, M., Akins, C., & Vandergriff, D. H. (1992). Increased responding to female stimuli as a result of sexual experience: Tests of mechanisms of learning. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 45B(2), 139–157. https://doi.org/ https://doi.org/10.1080/14640749208401014 .
  34. Domjan, M., Cusat, B., & Krause, M. (2004). Learning with arbitrary versus ecological conditioned stimuli: Evidence from sexual conditioning. Psychonomic Bulletin & Review, 11(2), 232–246. [DOI: 10.3758/BF03196565]
  35. Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In R. C. Bolles & M. D. Beecher (Eds.), Evolution and Behavior (pp. 185–212). Erlbaum.
  36. Fendt, M., & Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews, 23, 743–760. [PMID: 10392663]
  37. Field, A. P. (2006). Is conditioning a useful framework for understanding the development and treatment of phobias. Clinical Psychology Review, 26, 857–875. [PMID: 16472895]
  38. Finnie, P. S., & Nader, K. (2012). The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neuroscience Biobehavior Review, 36(7), 1667–1707. https://doi.org/10.1016/j.neubiorev.2012.03.008 [DOI: 10.1016/j.neubiorev.2012.03.008]
  39. Fitzgerald, P. J., Seemann, J. R., & Maren, S. (2014). Can fear extinction be enhanced? a review of pharmacological and behavioral findings. Brain Research Bulletin, 105, 46–60. [PMID: 24374101]
  40. Fitzgerald, R. D. (1963). Effects of partial reinforcement with acid on the classically conditioned salivary response in dogs. Journal of Comparative and Physiological Psychology, 56, 1056–1060. [PMID: 14100946]
  41. Flavell, C. R., & Lee, J. L. (2011). Behavioural memory reconsolidation of food and fear memories. Nature Communications, 2, 504. [PMID: 22009036]
  42. Fricchione, J., Greenberg, M. S., Spring, J., Wood, N., Mueller-Pfeiffer, C., Milad, M. R., Pitman, R. K., & Orr, S. P. (2016). Delayed extinction fails to reduce skin conductance reactivity to fear-conditioned stimuli: Delayed extinction fails to reduce reactivity. Psychophysiology, 53, 1343–1351. https://doi.org/10.1111/psyp.12687 [DOI: 10.1111/psyp.12687]
  43. Garcia, J., Hankins, W. G., & Rusiniak, K. W. (1974). Behavioral regulation of the milieu interne in man and rat. Science, 185, 824–831. [PMID: 11785521]
  44. Gibbon, J., Farrell, L., Locurto, C. M., Duncan, H. J., & Terrace, H. S. (1980). Partial reinforcement in autoshaping with pigeons. Animal Learning and Behavior, 8, 45–59. [DOI: 10.3758/BF03209729]
  45. Gibbs, C. M., Latham, S. B., & Gormezano, I. (1978). Classical conditioning of the rabbit nictitating membrane response: Effects of reinforcement schedule on response maintenance and resistance to extinction. Animal Learning and Behavior, 6, 209–215. [PMID: 680322]
  46. Gisquet-Verrier, P., & Riccio, D. (2012). Memory reactivation effects independent of reconsolidation. Learning and Memory, 19, 401–409. [PMID: 22904371]
  47. Golkar, A., Bellander, M., Olsson, A., & Öhman, A. (2012). Are fear memories erasable? Reconsolidation of learned fear with fear-relevant and fear-irrelevant stimuli. Frontiers in Behavioral Neuroscience, 6, 1–10. [DOI: 10.3389/fnbeh.2012.00080]
  48. Grady, A. K., Bowen, K. H., Hyde, A. T., Totsch, S. K., & Knight, D. C. (2016). Effect of continuous and partial reinforcement on the acquisition and extinction of human conditioned fear. Behavioral Neuroscience, 130(1), 36. [PMID: 26692449]
  49. Hilliard, S., Domjan, M., Nguyen, M., et al. (1998). Dissociation of conditioned appetitive and consummatory sexual behavior: Satiation and extinction tests. Animal Learning & Behavior, 26, 20–33. https://doi.org/10.3758/BF03199159 [DOI: 10.3758/BF03199159]
  50. Hoehl, S., Hellmer, K., Johansson, M., & Gredebäck, G. (2017). Itsy bitsy spider…: Infants react with increased arousal to spiders and snakes. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2017.01710
  51. Hollis, K. L. (1982). Pavlovian conditioning of signal-centered action patterns and autonomic behavior: a biological analysis of function. Advances in the Study of Behavior, 12, 1–64. [DOI: 10.1016/S0065-3454(08)60045-5]
  52. Hollis, K. L. (1997). Contemporary research on Pavlovian conditioning: a “new” functional analysis. American Psychologist, 52, 956–965. [PMID: 9301341]
  53. Horsley, R. R., Osborne, M., Norman, C., & Wells, T. (2012). High frequency gamblers show increased resistance to extinction following partial reinforcement. Behavioural Brain Research, 229, 438–442. https://doi.org/10.1016/j.bbr.2012.01.024 [DOI: 10.1016/j.bbr.2012.01.024]
  54. Hugdahl, K., & Jonsen, B. H. (1988). Preparedness and electrodermal fear-conditioning: Ontogenetic vs phylogenetic explanations. Behaviour Research and Therapy, 27(3), 269–278. [DOI: 10.1016/0005-7967(89)90046-6]
  55. Ishida, M., & Papini, M. R. (1997). Massed-trial overtraining effects on extinction and reversal performance in turtles (Geoclemys reevesii). The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 50B(1), 1–16. [DOI: 10.1080/027249997393619]
  56. Johnson, D. C., & Casey, B. J. (2015). Extinction during memory reconsolidation blocks recovery of fear in adolescents. Scientific Reports, 5, 8863. https://doi.org/10.1038/srep08863 [DOI: 10.1038/srep08863]
  57. Jones, C. E., & Monfils, M. H. (2016). Post-retrieval extinction in adolescence prevents return of juvenile fear. Learning & Memory, 23, 567–575. [DOI: 10.1101/lm.043281.116]
  58. Keller, N. E., & Dunsmoor, J. E. (2020). The effects of aversive-to-appetitive counterconditioning on implicit and explicit fear memory. Learning and Memory, 27, 12–19. [PMID: 31843978]
  59. Kindt, M., & Soeter, M. (2013). Reconsolidation in a human fear conditioning study: A test of extinction as updating mechanism. Biological Psychology, 92(1), 43–50. [PMID: 21986472]
  60. Kindt, M., Soeter, M., & Vervliet, B. (2009). Beyond extinction: Erasing human fear responses and preventing the return of fear. Nature Neuroscience, 12(3), 256–258. [PMID: 19219038]
  61. Klucken, T., Kruse, O., Schweckendiek, J., Kuepper, Y., Mueller, E. M., Hennig, J., & Stark, R. (2016). No evidence for blocking the return of fear by disrupting reconsolidation prior to extinction learning. Cortex, 79, 112–122. https://doi.org/10.1016/j.cortex.2016.03.015 [DOI: 10.1016/j.cortex.2016.03.015]
  62. Köksal, F., Domjan, M., & Weisman, G. (1994). Blocking of the sexual condiyioning of differentially effective conditioned-stimulus objects. Animal Learning and Behavior. https://doi.org/10.3758/BF03199962
  63. Krause, M. A., Cusato, B., & Domjan, M. (2003). Extinction of conditioned sexual responses in male Japanese quail (Coturnix japonica): role of species-typical cues. Journal of Comparative Psychology, 117(1), 76–86. https://doi.org/ https://doi.org/10.1037/0735-7036.117.1.76
  64. Kredlow, M. A., Unger, L. D., & Otto, M. W. (2016). Harnessing reconsolidation to weaken fear and appetitive memories: A meta-analysis of post-retrieval extinction effects. Psychological Bulletin, 142(3), 314–336. https://doi.org/10.1037/bul0000034 [DOI: 10.1037/bul0000034]
  65. Laborda, M. A., & Miller, R. R. (2012). Reactivated memories compete for expression after Pavlovian extinction. Behavioural Processes, 90, 20–27. https://doi.org/10.1016/j.beproc.2012.01.012 [DOI: 10.1016/j.beproc.2012.01.012]
  66. Laborda, M. A., & Miller, R. R. (2013). Preventing return of fear in an animal model of anxiety: additive effects of massive extinction and extinction in multiple contexts. Behavior Therapy, 44, 249–261. [PMID: 23611075]
  67. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture System (IAPS): affective ratings of pictures and instruction manual, Technical Report A-5. University of Florida.
  68. Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology, 30, 261–273. https://doi.org/10.1111/j.1469-8986.1993.tb03352.x [DOI: 10.1111/j.1469-8986.1993.tb03352.x]
  69. Lee, J. L. C., Nader, K., & Schiller, D. (2017). An update on memory reconsolidation updating. Trends in Cognitive Sciences, 21(7), 531–545. https://doi.org/10.1016/j.tics.2017.04.006 [DOI: 10.1016/j.tics.2017.04.006]
  70. Leung, H. T., Reeks, L. M., & Westbrook, R. F. (2012). Two ways to deepen extinction and the difference between them. Journal of Experimental Psychology. Animal Behavior Processes, 38, 394–406. [PMID: 23066980]
  71. Leung, H. T., Bailey, G. K., Laurent, V., & Westbrook, R. F. (2007). Rapid reacquisition of fear to a completely extinguished context is replaced by transient impairment with additional extinction training. Journal of Experimental Psychology: Animal Behavior Processes, 33, 299–313. https://doi.org/10.1037/0097-7403.33.3.299 [DOI: 10.1037/0097-7403.33.3.299]
  72. Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C., & Pine, D. S. (2005). Classical fear conditioning in the anxiety disorders: a meta-analysis. Behaviour Research and Therapy, 43, 1391–1424. https://doi.org/10.1016/j.brat.2004.10.007 [DOI: 10.1016/j.brat.2004.10.007]
  73. Liu, J., Zhao, L., Xue, Y., Shi, J., Suo, L., Luo, Y., Chai, B., Yang, C., Fang, Q., Zhang, Y., Bao, Y., Pickens, C. L., & Lu, L. (2014). An unconditioned stimulus retrieval extinction procedure to prevent the return of fear memory. Biological Psychiatry, 76, 895–901. https://doi.org/10.1016/j.biopsych.2014.03.027 [DOI: 10.1016/j.biopsych.2014.03.027]
  74. Maren, S., & Holmes, A. (2016). Stress and fear extinction. Neuropsychopharmacology, 41, 58–79. https://doi.org/10.1038/npp.2015.180 [DOI: 10.1038/npp.2015.180]
  75. McNally, R. J. (1987). Preparedness and phobias: A review. Psychological Bulletin, 101, 283–303. [PMID: 3562708]
  76. Meir Drexler, S., Merz, C. J., Hamacher-Dang, T. C., Marquardt, V., Fritsch, N., Otto, T., & Wolf, O. T. (2014). Effects of post retrieval-extinction learning on return of contextually controlled cued fear. Behavioral Neuroscience, 128, 474–481. https://doi.org/10.1037/a0036688 [DOI: 10.1037/a0036688]
  77. Mertens, G., Wagensveld, P., & Engelhard, I. M. (2019). Cue conditioning using a virtual spider discriminates between high and low spider fearful individuals. Computers in Human Behavior, 91, 192–200. [DOI: 10.1016/j.chb.2018.10.006]
  78. Miller, R. R., & Matzel, L. D. (2000). Memory involves far more than “consolidation”. Nature Reviews Neuroscience, 1, 214–216. https://doi.org/10.1038/35044578 [DOI: 10.1038/35044578]
  79. Mineka, S., & Öhman, A. (2002). Phobias and preparedness: The selective, automatic, and encapsulated nature of fear. Biological Psychiatry, 52(10), 927–937. [PMID: 12437934]
  80. Misanin, J. R., Miller, R. R., & Lewis, D. J. (1968). Retrograde amnesia produced by electroconvulsive shock after retrieval of a consolidated memory trace. Science, 80(160), 554–555. https://doi.org/10.1109/LASCAS.2014.6820259 [DOI: 10.1109/LASCAS.2014.6820259]
  81. Monfils, M.-H., Cowansage, K. K., Klann, E., & LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 324, 951–955. https://doi.org/10.1126/science.1167975 . [DOI: 10.1126/science.1167975]
  82. Mugnaini, M., Alfei, J. M., Bueno, A. M., Monti, R. I. F., Urcelay, G. P., & Gonzalo, P. (2022). Fear memory modulation by incentive down and up-shifts. Behavioural Brain Research, 422, 113766. https://doi.org/10.1016/j.bbr.2022.113766 [DOI: 10.1016/j.bbr.2022.113766]
  83. Myers, K. M., & Davis, M. (2007). Mechanisms of fear extinction. Molecular Psychiatry, 12, 120–150. [PMID: 17160066]
  84. Myers, K. M., Ressler, K. J., & Davis, M. (2006). Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learning and Memory, 13, 216–223. [PMID: 16585797]
  85. Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature., 406, 722–726. [PMID: 10963596]
  86. Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108(3), 483. [PMID: 11488376]
  87. Öhman, A., Erixon, G., & Lofberg, I. (1975). Phobias and preparedness: Phobic versus neutral pictures as conditioned stimuli for human autonomic responses. Journal of Abnormal Psychology, 84, 41–45. [PMID: 1110271]
  88. Öhman, A., Fredrikson, M., Hugdahl, K., & Rimmo, P. A. (1976). The premise of equipotentiality in human classical conditioning: Conditioned electrodermal responses to potentially phobic stimuli. Journal of Experimental Psychology: General, 103, 313–337. [DOI: 10.1037/0096-3445.105.4.313]
  89. Oyarzún, J. P., Lopez-Barroso, D., Fuentemilla, L., Cucurell, D., Pedraza, C., Rodriguez-Fornells, A., & de Diego-Balaguer, R. (2012). Updating fearful memories with extinction training during reconsolidation: A human study using auditory aversive stimuli. PloS One, 7(6), e38849. [PMID: 22768048]
  90. Pearce, J. M., Redhead, E. S., & Aydin, A. (1997). Partial reinforcement in appetitive Pavlovian conditioning with rats. Quarterly Journal of Experimental Psychology, 50B, 274–294.
  91. Phelps, E. A., O'Connor, K. J., Gatenby, J. C., Grillon, C., Gore, J. C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437–441. [PMID: 11276236]
  92. Piñeyro, M. E., Monti, R. I. F., Alfei, J. M., Bueno, A. M., & Urcelay, G. P. (2014). Memory destabilization is critical for the success of the reactivation–extinction procedure. Learning & Memory, 21, 46–54. https://doi.org/10.1101/lm.032714.113 [DOI: 10.1101/lm.032714.113]
  93. Prokasy, W. F., & Kumpfer, K. L. (1973). Classical conditioning. In W. F. Prokasy & D. C. Raskin (Eds.), Electrodermal activity in psychological research. Academic Press.
  94. Quirk, G. J. (2002). Memory for extinction of conditioned fear is long- lasting and persists following spontaneous recovery. Learning and Memory, 9, 402–407. [PMID: 12464700]
  95. Rescorla, R. A. (1993). Inhibitory associations between S and R in extinction. Animal Learning & Behavior, 21, 327–336. https://doi.org/10.3758/BF03197998 [DOI: 10.3758/BF03197998]
  96. Rescorla, R. A. (1999). Partial reinforcement reduces the associative change produced by nonreinforcement. Journal of Experimental Psychology: Animal Behavior Processes, 25, 403–414.
  97. Rescorla, R. A. (2001). Retraining of extinguished Pavlovian stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 27(2), 115–124. https://doi.org/ https://doi.org/10.1037/0097-7403.27.2.115
  98. Rescorla, R. A. (2004). Spontaneous Recovery. Learning and Memory, 11, 501–509. [PMID: 15466300]
  99. Rescorla, R. A., & Heth, C. D. (1975). Reinstatement of fear to an extinguished conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 1, 88–96. [PMID: 1151290]
  100. Rozin, P., & Kalat, J. W. (1971). Specific hungers and poison avoidance as adaptive specializations of learning. Psychological Review, 78, 459–486. [PMID: 4941414]
  101. Sara, S. J. (2000). Retrieval and reconsolidation: toward a neurobiology of remembering. Learning & Memory, 7, 73–84. [DOI: 10.1101/lm.7.2.73]
  102. Schafe, G. E., & LeDoux, J. E. (2000). Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. Journal of Neuroscience, 20, RC96. [PMID: 10974093]
  103. Schafe, G. E., Nader, K. E., & Le Doux, J. (2000). The labile nature of consolidation theory. Nature, 406, 722–726. https://doi.org/10.1038/35044580 [DOI: 10.1038/35044580]
  104. Schiller, D., & Phelps, E. A. (2011). Does reconsolidation occur in humans? Frontiers in Behavioral Neuroscience, 5, 24. [PMID: 21629821]
  105. Schiller, D., Kanen, J. W., LeDoux, J. E., Monfils, M. H., & Phelps, E. A. (2013). Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proceedings of the National Academy of Sciences, 110(50), 20040–20045. [DOI: 10.1073/pnas.1320322110]
  106. Schiller, D., Monfils, M. H., Raio, C. M., Johnson, D. C., LeDoux, J. E., & Phelps, E. A. (2010). Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 463, 49–53. [PMID: 20010606]
  107. Seligman, M. E. P. (1970). On the generality of the laws of learning. Psychological Review, 77, 406–418. [DOI: 10.1037/h0029790]
  108. Seligman, M. E. P., & Hager, J. L. (1972). Biological boundaries of learning. Appleton-Century-Crofts.
  109. Shettleworth, S. J. (1998). Cognition, evolution, and behavior. Oxford University Press.
  110. Sizhen, S., et al. (2022). Continuous theta-burst stimulation over the right dorsolateral prefrontal cortex disrupts fear memory reconsolidation in humans. iScience, 25(1), 103614. [DOI: 10.1016/j.isci.2021.103614]
  111. Slivka, R. M., & Bitterman, M. E. (1966). Classical appetitive conditioning in the pigeon: Partial reinforcement. Psychonomic Science, 4, 181–182. [DOI: 10.3758/BF03342239]
  112. Soeter, M., & Kindt, M. (2011). Disrupting reconsolidation: pharmacological and behavioral manipulations. Learning & Memory, 18(6), 357–366. [DOI: 10.1101/lm.2148511]
  113. Soeter, M., & Kindt, M. (2013). High trait anxiety: A challenge for disrupting fear memory reconsolidation. PloS One, 8(11), e75239. https://doi.org/10.1371/journal.pone.0075239 [DOI: 10.1371/journal.pone.0075239]
  114. Steinfurth, E. C., Kanen, J. W., Raio, C. M., Clem, R. L., Huganir, R. L., & Phelps, E. A. (2014). Young and old Pavlovian fear memories can be modified with extinction training during reconsolidation in humans. Learning & Memory, 21(7),338–341. http://dx.doi.org/ https://doi.org/10.1101/lm.033589.113
  115. Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J., & Kida, S. (2004). Memory reconsolidation and extinction have distinct temporal and biochemical signatures. Journal of Neuroscience, 24, 4787–4795. 10.1523/jneurosci.5491–03.2004
  116. Thompson, A., & Lipp, O. V. (2017). Extinction during reconsolidation eliminates recovery of fear conditioned to fear-irrelevant and fear-relevant stimuli. Behaviour Research and Therapy, 92, 1–10. https://doi.org/10.1016/j.brat.2017.01.017 [DOI: 10.1016/j.brat.2017.01.017]
  117. Timberlake, W. (1983). The functional organization of appetitive behavior: Behavior systems and learning. In M. D. Zeiler & P. Harzem (Eds.), Advances in analysis of behaviour: Vol. 3. Biological factors (pp. 177–221). Wiley.
  118. Todd, T. P., Vurbic, D., & Bouton, M. E. (2014). Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning. Neurobiology of Learning and Memory, 108, 52–64. https://doi.org/10.1016/j.nlm.2013.08.012 [DOI: 10.1016/j.nlm.2013.08.012]
  119. Tronson, N. C., & Taylor, J. R. (2007). Molecular mechanisms of memory reconsolidation. Nature Reviews Neuroscience, 8(4), 262–275. [PMID: 17342174]
  120. Urcelay, G. P., Wheeler, D. S., & Miller, R. R. (2009). Spacing extinction trials alleviates renewal and spontaneous recovery. Learning & Behavior, 37, 60–73. https://doi.org/10.3758/LB.37.1.60 [DOI: 10.3758/LB.37.1.60]
  121. Wang, S. H., de Oliveira Alvares, L., & Nader, K. (2009). Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nature Neuroscience, 12, 905–912. https://doi.org/10.1038/nn.2350 [DOI: 10.1038/nn.2350]
  122. Westfall, J. (2016). PANGEA (v0.2): Power ANalysis for GEneral Anova designs [Computer software]. https://jakewestfall. shinyapps.io/pangea/
  123. WHO. (2021). Snakebite envenoming. https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming
  124. Winters, B. D., Tucci, M. C., & DaCosta-Furtado, M. (2009). Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learning & Memory, 16(9), 545–553. https://doi.org/10.1101/lm.1509909 [DOI: 10.1101/lm.1509909]
  125. Zuccolo, P. F., & Hunziker, M. H. L. (2019). A review of boundary conditions and variables involved in the prevention of return of fear after post-retrieval extinction. Behavioural Processes, 162, 39–54. https://doi.org/10.1016/j.beproc.2019.01.011 [DOI: 10.1016/j.beproc.2019.01.011]

MeSH Term

Arousal
Conditioning, Classical
Extinction, Psychological
Fear
Galvanic Skin Response
Humans

Word Cloud

Created with Highcharts 10.0.0extinctionfearPREarbitraryCSconditionedeffectsstimulirecoveryactivatingprocedurereplicatestudyaimedCSsimagesvsiehacquisitionre-extinctionresponsestrialgroupsshowedecologicalVariousstudiesdemonstratedtrainingtakingplaceshortlyactivationacquiredweakencalledpost-retrievalHowevertimeemergedsufferedinconsistenciesabilityresearchersseeminglyestablishedExtantliteratureimpliesmightdifferentiallysensitivenatureusedaimpresentthereforethreefoldFirstSchilleretalNature46349-532010producedpositiveresultsAlsoexaminedfunctiontypeecological-fear-relevantspidersnakeyellowbluecirclesFinallyinvestigatelong-term2415d3moconsistedre-activationphasesDependentmeasureindexedskinconductanceSCRsarousalratingsparticipantslastfirstsignificantpatternscomparedtwo6withoutstimulusgroupundertooktrials10minsustainedThusfindingsprovidedevidencerobustnessparadigmpreventingextinguishedfearsbehaviorallyTestingmemoryreconsolidationhypothesisparadigm:EcologicalExtinctionFearconditioningReconsolidationSCRSpontaneous

Similar Articles

Cited By (1)