Quadrupolar Isotope-Correlation Spectroscopy in Solid-State NMR.

Tamar Wolf, Michael J Jaroszewicz, Lucio Frydman
Author Information
  1. Tamar Wolf: Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  2. Michael J Jaroszewicz: Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  3. Lucio Frydman: Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel. ORCID

Abstract

Quadrupolar solid-state NMR carries a wealth of structural information, including insights about chemical environments arising through the determination of local coupling parameters. Current methods can successfully resolve these parameters for individual sites using sample-spinning methods techniques applicable to quadrupolar ��� 1 nuclei, provided second-order central transition broadenings do not exceed by much the spinning rate. For large quadrupolar coupling ( ) values, however, static acquisitions are often preferable, leading to challenges in extracting local structural information. This study explores the use of two-dimensional QUadrupolar Isotope Correlation SpectroscopY (QUICSY) experiments as a means to increase the NMR spectral resolution and enrich the characterization of quadrupolar NMR patterns under static conditions. QUICSY seeks to correlate the solid-state NMR powder line shapes for two quadrupolar isotopes belonging to the same element via a 2D experiment. In general, two isotopes of the same element will have different nuclear quadrupole moments, gyromagnetic ratios, and spin numbers but essentially identical chemical environments. The possibility then arises of obtaining sharp "ridges" in these 2D correlations, even in static samples showing large quadrupolar effects, which lead to second-order line shapes that are several kilohertz wide. Moreover, pairs of quadrupolar isotopes are recurrent in the periodic table and include important elements such as Cl, Ga, Br, and Rb. The potential of this approach is explored theoretically and experimentally on two rubidium-containing salts: RbClO and RbSO. We find that each compound gives rise to distinctive 2D QUICSY line shapes, depending on the quadrupolar and chemical shift anisotropy (CSA) parameters of its sites. These experimental line shapes show good agreement with analytically derived 2D spectra relying on literature values of the quadrupolar and CSA tensors of these compounds. The approach underlined here paves the way toward better characterization of wideline NMR spectra of quadrupolar nuclei possessing different nuclear isotopes.

References

  1. Phys Rev Lett. 1987 Mar 2;58(9):953-956 [PMID: 10035081]
  2. Solid State Nucl Magn Reson. 2019 Feb;97:25-30 [PMID: 30583084]
  3. J Am Chem Soc. 2009 May 20;131(19):6658-9 [PMID: 19435387]
  4. J Magn Reson. 1999 Jun;138(2):298-307 [PMID: 10341134]
  5. J Magn Reson. 2000 Dec;147(2):238-49 [PMID: 11097815]
  6. J Magn Reson. 2000 Dec;147(2):296-330 [PMID: 11097821]
  7. Magn Reson Chem. 2006 Sep;44(9):823-31 [PMID: 16755602]
  8. J Chem Phys. 2007 Nov 21;127(19):194503 [PMID: 18035888]
  9. J Magn Reson. 1998 Mar;131(1):144-7 [PMID: 9533917]
  10. Solid State Nucl Magn Reson. 2013 Apr-May;51-52:1-15 [PMID: 23336997]
  11. J Chem Phys. 2004 Feb 8;120(6):2719-31 [PMID: 15268416]
  12. Phys Chem Chem Phys. 2006 Aug 7;8(29):3423-31 [PMID: 16855721]
  13. J Magn Reson. 2017 Apr;277:131-142 [PMID: 28285143]
  14. Solid State Nucl Magn Reson. 1995 May;4(4):241-8 [PMID: 7583059]
  15. J Phys Chem A. 2019 Jul 25;123(29):6194-6209 [PMID: 31294556]
  16. J Magn Reson. 2012 Nov;224:38-47 [PMID: 23023623]
  17. J Am Chem Soc. 2011 Dec 14;133(49):19570-3 [PMID: 21819148]
  18. J Chem Phys. 2016 Jan 21;144(3):034202 [PMID: 26801026]
  19. Prog Nucl Magn Reson Spectrosc. 2021 Apr;123:51-72 [PMID: 34078537]
  20. J Magn Reson. 2000 Jan;142(1):190-4 [PMID: 10617451]
  21. J Magn Reson. 2000 Dec;147(2):192-209 [PMID: 11097810]

Word Cloud

Created with Highcharts 10.0.0quadrupolarNMRlineshapesisotopes2DchemicalparametersstaticQUICSYtwoQuadrupolarsolid-statestructuralinformationenvironmentslocalcouplingmethodssitesnucleisecond-orderlargevaluescharacterizationelementdifferentnuclearapproachCSAspectracarrieswealthincludinginsightsarisingdeterminationCurrentcansuccessfullyresolveindividualusingsample-spinningtechniquesapplicable���1providedcentraltransitionbroadeningsexceedmuchspinningratehoweveracquisitionsoftenpreferableleadingchallengesextractingstudyexploresusetwo-dimensionalQUadrupolarIsotopeCorrelationSpectroscopYexperimentsmeansincreasespectralresolutionenrichpatternsconditionsseekscorrelatepowderbelongingviaexperimentgeneralwillquadrupolemomentsgyromagneticratiosspinnumbersessentiallyidenticalpossibilityarisesobtainingsharp"ridges"correlationsevensamplesshowingeffectsleadseveralkilohertzwideMoreoverpairsrecurrentperiodictableincludeimportantelementsClGaBrRbpotentialexploredtheoreticallyexperimentallyrubidium-containingsalts:RbClORbSOfindcompoundgivesrisedistinctivedependingshiftanisotropyexperimentalshowgoodagreementanalyticallyderivedrelyingliteraturetensorscompoundsunderlinedpaveswaytowardbetterwidelinepossessingIsotope-CorrelationSpectroscopySolid-State

Similar Articles

Cited By