Apelin alleviated neuroinflammation and promoted endogenous neural stem cell proliferation and differentiation after spinal cord injury in rats.

Qing Liu, Shuai Zhou, Xiao Wang, Chengxu Gu, Qixuan Guo, Xikai Li, Chunlei Zhang, Naili Zhang, Luping Zhang, Fei Huang
Author Information
  1. Qing Liu: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
  2. Shuai Zhou: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
  3. Xiao Wang: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
  4. Chengxu Gu: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
  5. Qixuan Guo: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
  6. Xikai Li: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
  7. Chunlei Zhang: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
  8. Naili Zhang: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
  9. Luping Zhang: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China. zhangluping3000@163.com.
  10. Fei Huang: Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China. hfei22518@163.com.

Abstract

BACKGROUND: Spinal cord injury (SCI) causes devastating neurological damage, including secondary injuries dominated by neuroinflammation. The role of Apelin, an endogenous ligand that binds the G protein-coupled receptor angiotensin-like receptor 1, in SCI remains unclear. Thus, our aim was to investigate the effects of Apelin in inflammatory responses and activation of endogenous neural stem cells (NSCs) after SCI.
METHODS: Apelin expression was detected in normal and injured rats, and roles of Apelin in primary NSCs were examined. In addition, we used induced pluripotent stem cells (iPSCs) as a carrier to prolong the effective duration of Apelin and evaluate its effects in a rat model of SCI.
RESULTS: Co-immunofluorescence staining suggested that Apelin was expressed in both astrocytes, neurons and microglia. Following SCI, Apelin expression decreased from 1 to 14 d and re-upregulated at 28 d. In vitro, Apelin promoted NSCs proliferation and differentiation into neurons. In vivo, lentiviral-transfected iPSCs were used as a carrier to prolong the effective duration of Apelin. Transplantation of transfected iPSCs in situ immediately after SCI reduced polarization of M1 microglia and A1 astrocytes, facilitated recovery of motor function, and promoted the proliferation and differentiation of endogenous NSCs in rats.
CONCLUSION: Apelin alleviated neuroinflammation and promoted the proliferation and differentiation of endogenous NSCs after SCI, suggesting that it might be a promising target for treatment of SCI.

Keywords

References

  1. J Neuroinflammation. 2020 Jul 25;17(1):223 [PMID: 32711525]
  2. J Neurosci. 2012 May 2;32(18):6391-410 [PMID: 22553043]
  3. Biosci Rep. 2020 May 29;40(5): [PMID: 32297644]
  4. Biochem Biophys Res Commun. 2019 May 21;513(1):105-111 [PMID: 30935689]
  5. J Neurosci. 2000 Mar 15;20(6):2218-28 [PMID: 10704497]
  6. Neurochem Int. 2013 Nov;63(6):535-40 [PMID: 24083989]
  7. Front Cell Dev Biol. 2021 Jun 14;9:693694 [PMID: 34195203]
  8. Neurochem Int. 2021 Nov;150:105171 [PMID: 34419525]
  9. Sci Rep. 2019 Dec 17;9(1):19291 [PMID: 31848365]
  10. Drug Des Devel Ther. 2020 Apr 22;14:1571-1581 [PMID: 32368015]
  11. J Neuroinflammation. 2019 Dec 2;16(1):247 [PMID: 31791369]
  12. Neurochem Res. 2015 Jan;40(1):89-97 [PMID: 25362565]
  13. ACS Biomater Sci Eng. 2017 Jul 10;3(7):1313-1321 [PMID: 28948211]
  14. J Cell Mol Med. 2020 Sep;24(18):10382-10390 [PMID: 32686917]
  15. CNS Neurosci Ther. 2014 Aug;20(8):778-86 [PMID: 24685114]
  16. Front Neurosci. 2021 Mar 24;15:620525 [PMID: 33841075]
  17. Nature. 2017 Jan 26;541(7638):481-487 [PMID: 28099414]
  18. Mol Med Rep. 2017 Apr;15(4):1577-1584 [PMID: 28259986]
  19. JAMA Neurol. 2015 Feb;72(2):235-7 [PMID: 25531583]
  20. Neurosci Lett. 2014 May 7;568:44-9 [PMID: 24686182]
  21. PLoS One. 2010 Aug 09;5(8):e12021 [PMID: 20711496]
  22. J Chem Neuroanat. 2021 Apr;113:101924 [PMID: 33567298]
  23. Brain Res. 2019 Jul 15;1715:203-212 [PMID: 30914252]
  24. Sci Rep. 2018 Jul 16;8(1):10707 [PMID: 30013050]
  25. Brain. 2019 Apr 1;142(4):885-902 [PMID: 30805583]
  26. Nat Commun. 2019 Aug 28;10(1):3879 [PMID: 31462640]
  27. Biosci Rep. 2018 Nov 7;38(6): [PMID: 30287503]
  28. J Neuroinflammation. 2020 Jul 6;17(1):202 [PMID: 32631435]
  29. Front Pharmacol. 2019 Apr 16;10:395 [PMID: 31040784]
  30. Peptides. 2019 Aug;118:170102 [PMID: 31199948]
  31. Immunity. 2017 Jun 20;46(6):957-967 [PMID: 28636962]
  32. Brain Res. 2020 Jan 1;1726:146493 [PMID: 31586624]
  33. Neural Plast. 2013;2013:945034 [PMID: 24288627]
  34. EMBO J. 2015 May 5;34(9):1180-94 [PMID: 25715649]
  35. Cells. 2019 Oct 24;8(11): [PMID: 31653030]
  36. Peptides. 2015 Jan;63:55-62 [PMID: 25278489]
  37. Exp Cell Res. 2010 Jul 1;316(11):1773-83 [PMID: 20152832]
  38. Sci Rep. 2017 Jul 14;7(1):5452 [PMID: 28710384]
  39. Sci Rep. 2018 Jun 26;8(1):9715 [PMID: 29946114]
  40. Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1896-E1905 [PMID: 29437957]
  41. Int J Stem Cells. 2019 Jul 31;12(2):331-339 [PMID: 31242718]
  42. J Nanobiotechnology. 2020 Jul 25;18(1):105 [PMID: 32711535]
  43. J Neurotrauma. 2015 Mar 15;32(6):381-91 [PMID: 25141070]
  44. J Neuroinflammation. 2019 May 14;16(1):99 [PMID: 31088570]
  45. JCI Insight. 2020 Apr 23;5(8): [PMID: 32208384]
  46. J Neurosci. 2011 Apr 20;31(16):6053-8 [PMID: 21508230]
  47. Nature. 2016 Apr 14;532(7598):195-200 [PMID: 27027288]
  48. Mol Neurobiol. 2012 Oct;46(2):265-74 [PMID: 22806359]
  49. Tissue Eng Part A. 2009 Jul;15(7):1797-805 [PMID: 19191513]
  50. Discov Med. 2011 Nov;12(66):381-92 [PMID: 22127109]
  51. ASN Neuro. 2015 Sep 21;7(5): [PMID: 26391329]
  52. Sci Rep. 2020 Mar 12;10(1):4554 [PMID: 32165661]
  53. Sci Rep. 2017 Mar 16;7(1):206 [PMID: 28303030]
  54. Biochem Biophys Res Commun. 1998 Oct 20;251(2):471-6 [PMID: 9792798]
  55. Circulation. 2010 Apr 27;121(16):1818-27 [PMID: 20385929]
  56. Biomaterials. 2015 Jan;37:289-98 [PMID: 25443792]
  57. Cell Death Discov. 2020 Oct 6;6(1):97 [PMID: 33083018]
  58. Neuroscience. 2008 Oct 15;156(3):498-514 [PMID: 18786615]
  59. Brain Inj. 2016;30(1):48-65 [PMID: 26579945]
  60. J Neurosci. 2009 Jan 28;29(4):1093-104 [PMID: 19176818]

Grants

  1. 81870985/National Natural Science Foundation of China
  2. 81171142/National Natural Science Foundation of China
  3. ZR201702140355/Natural Science Foundation of Shandong Province

MeSH Term

Animals
Apelin
Cell Differentiation
Cell Proliferation
Neuroinflammatory Diseases
Rats
Recovery of Function
Spinal Cord
Spinal Cord Injuries

Chemicals

Apelin

Word Cloud

Created with Highcharts 10.0.0ApelinSCIendogenousNSCsstempromotedproliferationdifferentiationneuroinflammationneuralcellsratsiPSCscordinjuryreceptor1effectsexpressionusedcarrierprolongeffectivedurationastrocytesneuronsmicrogliaalleviatedBACKGROUND:SpinalcausesdevastatingneurologicaldamageincludingsecondaryinjuriesdominatedroleligandbindsGprotein-coupledangiotensin-likeremainsunclearThusaiminvestigateinflammatoryresponsesactivationMETHODS:detectednormalinjuredrolesprimaryexaminedadditioninducedpluripotentevaluateratmodelRESULTS:Co-immunofluorescencestainingsuggestedexpressedFollowingdecreased14 dre-upregulated28 dvitrovivolentiviral-transfectedTransplantationtransfectedsituimmediatelyreducedpolarizationM1A1facilitatedrecoverymotorfunctionCONCLUSION:suggestingmightpromisingtargettreatmentcellspinalAstrocytesEndogenousNeuroinflammation

Similar Articles

Cited By