Neural circuit mechanisms of hierarchical sequence learning tested on large-scale recording data.

Toshitake Asabuki, Prajakta Kokate, Tomoki Fukai
Author Information
  1. Toshitake Asabuki: Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan. ORCID
  2. Prajakta Kokate: Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan. ORCID
  3. Tomoki Fukai: Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan. ORCID

Abstract

The brain performs various cognitive functions by learning the spatiotemporal salient features of the environment. This learning requires unsupervised segmentation of hierarchically organized spike sequences, but the underlying neural mechanism is only poorly understood. Here, we show that a recurrent gated network of neurons with dendrites can efficiently solve difficult segmentation tasks. In this model, multiplicative recurrent connections learn a context-dependent gating of dendro-somatic information transfers to minimize error in the prediction of somatic responses by the dendrites. Consequently, these connections filter the redundant input features represented by the dendrites but unnecessary in the given context. The model was tested on both synthetic and real neural data. In particular, the model was successful for segmenting multiple cell assemblies repeating in large-scale calcium imaging data containing thousands of cortical neurons. Our results suggest that recurrent gating of dendro-somatic signal transfers is crucial for cortical learning of context-dependent segmentation tasks.

References

  1. Front Neuroinform. 2019 May 31;13:39 [PMID: 31214005]
  2. Nature. 2020 Jun;582(7813):539-544 [PMID: 32555461]
  3. Nature. 2002 Nov 21;420(6913):320-4 [PMID: 12447440]
  4. Neuron. 2020 Jan 22;105(2):237-245.e4 [PMID: 31759808]
  5. J Neurosci. 2015 May 6;35(18):7203-14 [PMID: 25948269]
  6. Neuron. 2019 Sep 25;103(6):1178-1190.e7 [PMID: 31345643]
  7. Am J Psychol. 1987 Fall-Winter;100(3-4):441-71 [PMID: 3322052]
  8. Sci Adv. 2021 Feb 19;7(8): [PMID: 33608265]
  9. Science. 2010 Sep 24;329(5999):1671-5 [PMID: 20705816]
  10. Science. 1996 Dec 13;274(5294):1926-8 [PMID: 8943209]
  11. Psychol Rev. 1994 Apr;101(2):343-52 [PMID: 8022966]
  12. Nat Commun. 2019 Oct 18;10(1):4745 [PMID: 31628322]
  13. Neuron. 2015 Oct 7;88(1):2-19 [PMID: 26447569]
  14. Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22783-22794 [PMID: 31636212]
  15. Science. 2007 Feb 16;315(5814):972-6 [PMID: 17218491]
  16. Nat Neurosci. 2016 Jan;19(1):158-64 [PMID: 26642090]
  17. Nat Commun. 2016 Sep 20;7:12815 [PMID: 27649374]
  18. Psychol Rev. 2020 Apr;127(3):327-361 [PMID: 32223284]
  19. Nature. 2010 Apr 29;464(7293):1307-12 [PMID: 20428163]
  20. Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1368-73 [PMID: 14742867]
  21. J Neurophysiol. 1993 Oct;70(4):1629-38 [PMID: 8283219]
  22. Elife. 2019 Feb 05;8: [PMID: 30719973]
  23. Elife. 2013 Jul 09;2:e00801 [PMID: 23853714]
  24. Sci Rep. 2019 Jul 18;9(1):10448 [PMID: 31320693]
  25. Science. 2007 Nov 16;318(5853):1147-50 [PMID: 18006749]
  26. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  27. Science. 1980 Jun 6;208(4448):1181-2 [PMID: 7375930]
  28. Cell. 2020 Feb 20;180(4):666-676.e13 [PMID: 32084339]
  29. Nature. 2020 Mar;579(7798):256-259 [PMID: 32132709]
  30. Nat Commun. 2020 Mar 25;11(1):1554 [PMID: 32214100]
  31. Neuron. 2014 Feb 5;81(3):521-8 [PMID: 24507189]
  32. PLoS Comput Biol. 2012;8(6):e1002550 [PMID: 22719240]
  33. Vision Res. 2015 Nov;116(Pt B):194-209 [PMID: 25542276]
  34. Neural Comput. 2000 Oct;12(10):2451-71 [PMID: 11032042]
  35. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2745-50 [PMID: 18268353]
  36. Nature. 1994 Sep 29;371(6496):413-6 [PMID: 8090219]
  37. Science. 2019 Apr 19;364(6437):255 [PMID: 31000656]
  38. IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2222-2232 [PMID: 27411231]
  39. J Neurosci. 2013 Jul 10;33(28):11515-29 [PMID: 23843522]
  40. PLoS Comput Biol. 2012;8(3):e1002385 [PMID: 22412358]
  41. Behav Brain Sci. 2016 Jan;39:e62 [PMID: 25869618]
  42. J Neurosci. 2008 Oct 1;28(40):10081-9 [PMID: 18829966]
  43. J Neurosci. 2014 Jan 15;34(3):1037-50 [PMID: 24431461]

MeSH Term

Brain
Learning
Models, Neurological
Neurons

Word Cloud

Created with Highcharts 10.0.0learningsegmentationrecurrentdendritesmodeldatafeaturesneuralneuronstasksconnectionscontext-dependentgatingdendro-somatictransferstestedlarge-scalecorticalbrainperformsvariouscognitivefunctionsspatiotemporalsalientenvironmentrequiresunsupervisedhierarchicallyorganizedspikesequencesunderlyingmechanismpoorlyunderstoodshowgatednetworkcanefficientlysolvedifficultmultiplicativelearninformationminimizeerrorpredictionsomaticresponsesConsequentlyfilterredundantinputrepresentedunnecessarygivencontextsyntheticrealparticularsuccessfulsegmentingmultiplecellassembliesrepeatingcalciumimagingcontainingthousandsresultssuggestsignalcrucialNeuralcircuitmechanismshierarchicalsequencerecording

Similar Articles

Cited By