Sequence learning, prediction, and replay in networks of spiking neurons.

Younes Bouhadjar, Dirk J Wouters, Markus Diesmann, Tom Tetzlaff
Author Information
  1. Younes Bouhadjar: Institute of Neuroscience and Medicine (INM-6), & Institute for Advanced Simulation (IAS-6), & JARA BRAIN Institute Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany. ORCID
  2. Dirk J Wouters: Institute of Electronic Materials (IWE 2) & JARA-FIT, RWTH Aachen University, Aachen, Germany. ORCID
  3. Markus Diesmann: Institute of Neuroscience and Medicine (INM-6), & Institute for Advanced Simulation (IAS-6), & JARA BRAIN Institute Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany. ORCID
  4. Tom Tetzlaff: Institute of Neuroscience and Medicine (INM-6), & Institute for Advanced Simulation (IAS-6), & JARA BRAIN Institute Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany. ORCID

Abstract

Sequence learning, prediction and replay have been proposed to constitute the universal computations performed by the neocortex. The Hierarchical Temporal Memory (HTM) algorithm realizes these forms of computation. It learns sequences in an unsupervised and continuous manner using local learning rules, permits a context specific prediction of future sequence elements, and generates mismatch signals in case the predictions are not met. While the HTM algorithm accounts for a number of biological features such as topographic receptive fields, nonlinear dendritic processing, and sparse connectivity, it is based on abstract discrete-time neuron and synapse dynamics, as well as on plasticity mechanisms that can only partly be related to known biological mechanisms. Here, we devise a continuous-time implementation of the temporal-memory (TM) component of the HTM algorithm, which is based on a recurrent network of spiking neurons with biophysically interpretable variables and parameters. The model learns high-order sequences by means of a structural Hebbian synaptic plasticity mechanism supplemented with a rate-based homeostatic control. In combination with nonlinear dendritic input integration and local inhibitory feedback, this type of plasticity leads to the dynamic self-organization of narrow sequence-specific subnetworks. These subnetworks provide the substrate for a faithful propagation of sparse, synchronous activity, and, thereby, for a robust, context specific prediction of future sequence elements as well as for the autonomous replay of previously learned sequences. By strengthening the link to biology, our implementation facilitates the evaluation of the TM hypothesis based on experimentally accessible quantities. The continuous-time implementation of the TM algorithm permits, in particular, an investigation of the role of sequence timing for sequence learning, prediction and replay. We demonstrate this aspect by studying the effect of the sequence speed on the sequence learning performance and on the speed of autonomous sequence replay.

References

  1. J Neurosci. 2020 Nov 11;40(46):8799-8815 [PMID: 33046549]
  2. J Neurophysiol. 2008 Oct;100(4):2165-76 [PMID: 18632888]
  3. Science. 1997 Dec 12;278(5345):1950-3 [PMID: 9395398]
  4. Nat Neurosci. 2000 Jun;3(6):545-50 [PMID: 10816309]
  5. Trends Neurosci. 2012 Jun;35(6):345-55 [PMID: 22579264]
  6. Neuron. 2015 Oct 7;88(1):2-19 [PMID: 26447569]
  7. Nat Rev Neurosci. 2004 Feb;5(2):97-107 [PMID: 14735113]
  8. J Neurosci. 2005 Apr 13;25(15):3940-51 [PMID: 15829646]
  9. Science. 2010 Jan 29;327(5965):587-90 [PMID: 20110507]
  10. Front Comput Neurosci. 2017 May 24;11:41 [PMID: 28596729]
  11. Trends Neurosci. 2011 Apr;34(4):210-24 [PMID: 21439656]
  12. J Neurosci Res. 2010 Nov 1;88(14):2991-3001 [PMID: 20544831]
  13. Hippocampus. 2015 Apr;25(4):415-31 [PMID: 25475876]
  14. J Neurosci. 1999 Nov 1;19(21):9497-507 [PMID: 10531452]
  15. Neural Comput. 2003 Apr;15(4):937-63 [PMID: 12689393]
  16. Nat Neurosci. 2000 Nov;3 Suppl:1178-83 [PMID: 11127835]
  17. Cell. 2008 Oct 31;135(3):422-35 [PMID: 18984155]
  18. Cereb Cortex. 2008 Jan;18(1):13-28 [PMID: 17420172]
  19. Science. 2010 Jan 29;327(5965):584-7 [PMID: 20110506]
  20. Neuron. 2012 Sep 20;75(6):1001-7 [PMID: 22998869]
  21. Science. 2009 Aug 7;325(5941):756-60 [PMID: 19661433]
  22. J Neurosci. 1998 May 15;18(10):3870-96 [PMID: 9570816]
  23. PLoS Comput Biol. 2020 Jan 21;16(1):e1007606 [PMID: 31961853]
  24. Sci Rep. 2019 Dec 4;9(1):18303 [PMID: 31797943]
  25. Neuron. 2015 Aug 5;87(3):576-89 [PMID: 26247864]
  26. Biol Cybern. 2008 Jun;98(6):459-78 [PMID: 18491160]
  27. Neuron. 2002 Dec 19;36(6):1183-94 [PMID: 12495631]
  28. Nature. 1999 Dec 2;402(6761):529-33 [PMID: 10591212]
  29. Nature. 2012 Mar 14;484(7392):62-8 [PMID: 22419153]
  30. Neuron. 2003 Mar 27;37(6):989-99 [PMID: 12670427]
  31. Neural Comput. 1998 Aug 15;10(6):1321-71 [PMID: 9698348]
  32. J Neurosci. 2004 Feb 18;24(7):1689-99 [PMID: 14973235]
  33. Elife. 2021 Mar 18;10: [PMID: 33734085]
  34. Science. 2007 Nov 16;318(5853):1147-50 [PMID: 18006749]
  35. PLoS Comput Biol. 2018 Jun 5;14(6):e1006187 [PMID: 29870532]
  36. Nature. 1998 Feb 26;391(6670):892-6 [PMID: 9495341]
  37. Trends Cogn Sci. 1998 Aug 1;2(8):275-81 [PMID: 21227209]
  38. Elife. 2021 Oct 14;10: [PMID: 34647889]
  39. Front Neural Circuits. 2016 Mar 30;10:23 [PMID: 27065813]
  40. PLoS Comput Biol. 2012;8(9):e1002689 [PMID: 23028287]
  41. Biol Cybern. 1999 Nov;81(5-6):381-402 [PMID: 10592015]
  42. Science. 2020 Jan 3;367(6473):83-87 [PMID: 31896716]
  43. Nat Commun. 2020 Mar 25;11(1):1554 [PMID: 32214100]
  44. Biol Cybern. 2018 Apr;112(1-2):57-80 [PMID: 29651582]
  45. Nat Neurosci. 2014 May;17(5):732-7 [PMID: 24657967]
  46. Nature. 2000 Mar 16;404(6775):285-9 [PMID: 10749211]
  47. Annu Rev Neurosci. 2013 Jul 8;36:1-24 [PMID: 23841837]
  48. Science. 2000 Oct 27;290(5492):812-6 [PMID: 11052946]
  49. J Neurosci. 2006 Nov 22;26(47):12206-18 [PMID: 17122045]
  50. Annu Rev Neurosci. 2004;27:307-40 [PMID: 15217335]
  51. Nature. 1995 Jun 1;375(6530):400-4 [PMID: 7760933]
  52. Science. 1996 Nov 8;274(5289):972-6 [PMID: 8875937]
  53. Neuron. 2009 Aug 27;63(4):497-507 [PMID: 19709631]
  54. Front Comput Neurosci. 2011 Nov 10;5:47 [PMID: 22203799]
  55. Neuron. 2001 Jan;29(1):145-56 [PMID: 11182087]
  56. PLoS Comput Biol. 2016 May 23;12(5):e1004954 [PMID: 27213810]
  57. Neural Comput. 2016 Nov;28(11):2474-2504 [PMID: 27626963]
  58. Nature. 2002 Sep 5;419(6902):65-70 [PMID: 12214232]
  59. Trends Neurosci. 2015 Sep;38(9):560-70 [PMID: 26275935]
  60. J Neurosci. 2013 Jul 10;33(28):11515-29 [PMID: 23843522]
  61. Nat Neurosci. 2012 Jan 22;15(3):449-55, S1-2 [PMID: 22267160]
  62. Neural Comput. 2007 Jun;19(6):1437-67 [PMID: 17444756]
  63. Neuron. 2018 May 16;98(4):687-705 [PMID: 29772201]
  64. Front Comput Neurosci. 2009 Oct 30;3:23 [PMID: 19893759]
  65. Curr Opin Neurobiol. 2010 Apr;20(2):183-90 [PMID: 20303256]

MeSH Term

Learning
Models, Neurological
Neural Networks, Computer
Neuronal Plasticity
Neurons
Synapses

Word Cloud

Created with Highcharts 10.0.0sequencelearningpredictionreplayalgorithmHTMsequencesbasedplasticityimplementationTMSequencelearnslocalpermitscontextspecificfutureelementsbiologicalnonlineardendriticsparsewellmechanismscontinuous-timespikingneuronssubnetworksautonomousspeedproposedconstituteuniversalcomputationsperformedneocortexHierarchicalTemporalMemoryrealizesformscomputationunsupervisedcontinuousmannerusingrulesgeneratesmismatchsignalscasepredictionsmetaccountsnumberfeaturestopographicreceptivefieldsprocessingconnectivityabstractdiscrete-timeneuronsynapsedynamicscanpartlyrelatedknowndevisetemporal-memorycomponentrecurrentnetworkbiophysicallyinterpretablevariablesparametersmodelhigh-ordermeansstructuralHebbiansynapticmechanismsupplementedrate-basedhomeostaticcontrolcombinationinputintegrationinhibitoryfeedbacktypeleadsdynamicself-organizationnarrowsequence-specificprovidesubstratefaithfulpropagationsynchronousactivitytherebyrobustpreviouslylearnedstrengtheninglinkbiologyfacilitatesevaluationhypothesisexperimentallyaccessiblequantitiesparticularinvestigationroletimingdemonstrateaspectstudyingeffectperformancenetworks

Similar Articles

Cited By