The functions of a reservoir offset voltage applied to physically defined p-channel Si quantum dots.

Shimpei Nishiyama, Kimihiko Kato, Mizuki Kobayashi, Raisei Mizokuchi, Takahiro Mori, Tetsuo Kodera
Author Information
  1. Shimpei Nishiyama: Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro, Tokyo, 152-8552, Japan.
  2. Kimihiko Kato: Device Technology Research Institute (D-Tech), National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, Ibaraki, 305-8568, Japan.
  3. Mizuki Kobayashi: Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro, Tokyo, 152-8552, Japan.
  4. Raisei Mizokuchi: Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro, Tokyo, 152-8552, Japan.
  5. Takahiro Mori: Device Technology Research Institute (D-Tech), National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, Ibaraki, 305-8568, Japan.
  6. Tetsuo Kodera: Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro, Tokyo, 152-8552, Japan. kodera.t.ac@m.titech.ac.jp.

Abstract

We propose and define a reservoir offset voltage as a voltage commonly applied to both reservoirs of a quantum dot and study the functions in p-channel Si quantum dots. By the reservoir offset voltage, the electrochemical potential of the quantum dot can be modulated. In addition, when quantum dots in different channels are capacitively coupled, the reservoir offset voltage of one of the QDs can work as a gate voltage for the others. Our results show that the technique will lead to reduction of the number of gate electrodes, which is advantageous for future qubit integration.

References

  1. Sci Adv. 2016 Aug 12;2(8):e1600694 [PMID: 27536725]
  2. Nature. 2019 May;569(7757):532-536 [PMID: 31086337]
  3. Nat Commun. 2019 Jul 3;10(1):2776 [PMID: 31270319]
  4. Nat Nanotechnol. 2011 Dec 18;7(1):47-50 [PMID: 22179569]
  5. Nat Nanotechnol. 2013 Mar;8(3):170-4 [PMID: 23416794]
  6. Nano Lett. 2007 Jul;7(7):2051-5 [PMID: 17567176]
  7. Nat Commun. 2016 Nov 24;7:13575 [PMID: 27882926]
  8. Phys Rev Lett. 2020 Mar 20;124(11):117701 [PMID: 32242710]
  9. Nat Commun. 2017 Dec 15;8(1):1766 [PMID: 29242497]
  10. Nat Nanotechnol. 2014 Sep;9(9):666-70 [PMID: 25108810]
  11. Nano Lett. 2016 Nov 9;16(11):6879-6885 [PMID: 27656760]
  12. Nat Nanotechnol. 2014 Dec;9(12):981-5 [PMID: 25305743]
  13. Nat Commun. 2020 Mar 2;11(1):1144 [PMID: 32123167]
  14. Nano Lett. 2014;14(4):2094-8 [PMID: 24611581]

Grants

  1. JPMXS0118069228/Ministry of Education, Culture, Sports, Science and Technology
  2. 20H00237/Japan Society for the Promotion of Science
  3. JPMJCR1675/Japan Science and Technology Agency

Word Cloud

Created with Highcharts 10.0.0voltagequantumreservoiroffsetdotsapplieddotfunctionsp-channelSicangateproposedefinecommonlyreservoirsstudyelectrochemicalpotentialmodulatedadditiondifferentchannelscapacitivelycoupledoneQDsworkothersresultsshowtechniquewillleadreductionnumberelectrodesadvantageousfuturequbitintegrationphysicallydefined

Similar Articles

Cited By