Control-Based Continuation: A New Approach to Prototype Synthetic Gene Networks.

Irene de Cesare, Davide Salzano, Mario di Bernardo, Ludovic Renson, Lucia Marucci
Author Information
  1. Irene de Cesare: Engineering Mathematics Department, University of Bristol, Bristol BS8 1TW, U.K.
  2. Davide Salzano: Engineering Mathematics Department, University of Bristol, Bristol BS8 1TW, U.K.
  3. Mario di Bernardo: Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy.
  4. Ludovic Renson: Department of Mechanical Engineering, Imperial College London, London SW7 2BX, U.K.
  5. Lucia Marucci: Engineering Mathematics Department, University of Bristol, Bristol BS8 1TW, U.K. ORCID

Abstract

Control-Based Continuation (CBC) is a general and systematic method to carry out the bifurcation analysis of physical experiments. CBC does not rely on a mathematical model and thus overcomes the uncertainty introduced when identifying bifurcation curves indirectly through modeling and parameter estimation. We demonstrate, , CBC applicability to biochemical processes by tracking the equilibrium curve of a toggle switch, which includes additive process noise and exhibits bistability. We compare the results obtained when CBC uses a model-free and model-based control strategy and show that both can track stable and unstable solutions, revealing bistability. We then demonstrate CBC in conditions more representative of an experiment using an agent-based simulator describing cell growth and division, cell-to-cell variability, spatial distribution, and diffusion of chemicals. We further show how the identified curves can be used for parameter estimation and discuss how CBC can significantly accelerate the prototyping of synthetic gene regulatory networks.

Keywords

References

  1. PLoS Comput Biol. 2016 Oct 28;12(10):e1005153 [PMID: 27792726]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052916 [PMID: 23767607]
  3. Cell. 2011 Mar 18;144(6):910-25 [PMID: 21414483]
  4. PLoS One. 2012;7(8):e42790 [PMID: 22936991]
  5. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14271-6 [PMID: 22893687]
  6. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  7. Stem Cells Int. 2017;2017:7160419 [PMID: 28684962]
  8. ACS Synth Biol. 2016 Feb 19;5(2):154-62 [PMID: 26554583]
  9. ACS Synth Biol. 2021 May 21;10(5):979-989 [PMID: 33904719]
  10. J R Soc Interface. 2016 Jul;13(120): [PMID: 27440256]
  11. Nature. 2008 Nov 27;456(7221):516-9 [PMID: 18971928]
  12. Nat Commun. 2017 Nov 17;8(1):1671 [PMID: 29150615]
  13. Nucleic Acids Res. 2010 May;38(8):2702-11 [PMID: 20197318]
  14. ACS Omega. 2021 Jan 19;6(4):2473-2476 [PMID: 33553865]
  15. PLoS Comput Biol. 2014 May 15;10(5):e1003625 [PMID: 24831205]
  16. ACS Synth Biol. 2018 Nov 16;7(11):2558-2565 [PMID: 30346742]
  17. Nat Biotechnol. 2004 Jul;22(7):867-70 [PMID: 15184906]
  18. ACS Synth Biol. 2020 Oct 16;9(10):2617-2624 [PMID: 32966743]
  19. PLoS One. 2009 Dec 07;4(12):e8083 [PMID: 19997611]
  20. Methods Mol Biol. 2021;2229:205-219 [PMID: 33405224]
  21. J R Soc Interface. 2019 Jul 26;16(156):20190043 [PMID: 31266417]
  22. Mol Syst Biol. 2008;4:187 [PMID: 18414488]
  23. Nature. 2000 Jan 20;403(6767):339-42 [PMID: 10659857]
  24. Nat Commun. 2019 Oct 2;10(1):4481 [PMID: 31578371]
  25. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18507-12 [PMID: 25512544]
  26. PLoS Comput Biol. 2011 Jun;7(6):e1002074 [PMID: 21765813]
  27. ACS Synth Biol. 2020 Apr 17;9(4):793-803 [PMID: 32163268]
  28. Cell Syst. 2018 Apr 25;6(4):521-530.e3 [PMID: 29574056]
  29. Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10610-5 [PMID: 23754391]
  30. ACS Synth Biol. 2017 Oct 20;6(10):1969-1972 [PMID: 28585809]
  31. Nature. 2016 Aug 4;536(7614):81-85 [PMID: 27437587]

Grants

  1. MR/N021444/1/Medical Research Council

MeSH Term

Biochemical Phenomena
Cell Cycle
Gene Regulatory Networks
Genes, Synthetic
Models, Theoretical

Word Cloud

Created with Highcharts 10.0.0CBCcanControl-BasedbifurcationcurvesparameterestimationdemonstratetoggleswitchbistabilityshowsyntheticContinuationgeneralsystematicmethodcarryanalysisphysicalexperimentsrelymathematicalmodelthusovercomesuncertaintyintroducedidentifyingindirectlymodelingapplicabilitybiochemicalprocessestrackingequilibriumcurveincludesadditiveprocessnoiseexhibitscompareresultsobtainedusesmodel-freemodel-basedcontrolstrategytrackstableunstablesolutionsrevealingconditionsrepresentativeexperimentusingagent-basedsimulatordescribingcellgrowthdivisioncell-to-cellvariabilityspatialdistributiondiffusionchemicalsidentifieduseddiscusssignificantlyaccelerateprototypinggeneregulatorynetworksContinuation:NewApproachPrototypeSyntheticGeneNetworksbifurcationscontrol-basedcontinuationbiology

Similar Articles

Cited By (1)