Host control and the evolution of cooperation in host microbiomes.

Connor Sharp, Kevin R Foster
Author Information
  1. Connor Sharp: Department of Zoology, University of Oxford, Oxford, UK. connor.sharp@zoo.ox.ac.uk. ORCID
  2. Kevin R Foster: Department of Zoology, University of Oxford, Oxford, UK. kevin.foster@zoo.ox.ac.uk. ORCID

Abstract

Humans, and many other species, are host to diverse symbionts. It is often suggested that the mutual benefits of host-microbe relationships can alone explain cooperative evolution. Here, we evaluate this hypothesis with evolutionary modelling. Our model predicts that mutual benefits are insufficient to drive cooperation in systems like the human microbiome, because of competition between symbionts. However, cooperation can emerge if hosts can exert control over symbionts, so long as there are constraints that limit symbiont counter evolution. We test our model with genomic data of two bacterial traits monitored by animal immune systems. In both cases, bacteria have evolved as predicted under host control, tending to lose flagella and maintain butyrate production when host-associated. Moreover, an analysis of bacteria that retain flagella supports the evolution of host control, via toll-like receptor 5, which limits symbiont counter evolution. Our work puts host control mechanisms, including the immune system, at the centre of microbiome evolution.

References

  1. Nat Commun. 2022 Jun 22;13(1):3567 [PMID: 35732630]
  2. PLoS Genet. 2012;8(7):e1002764 [PMID: 22807683]
  3. Cell Host Microbe. 2013 Nov 13;14(5):571-81 [PMID: 24237702]
  4. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  5. Nucleic Acids Res. 2017 Jan 4;45(D1):D535-D542 [PMID: 27899627]
  6. Mucosal Immunol. 2017 Jan;10(1):18-26 [PMID: 27554295]
  7. Infect Immun. 2003 Apr;71(4):2280-2 [PMID: 12654857]
  8. BMC Evol Biol. 2012 Jul 24;12:122 [PMID: 22827462]
  9. mBio. 2016 Mar 31;7(2):e02099 [PMID: 27034285]
  10. PLoS One. 2014 Oct 17;9(10):e110726 [PMID: 25330359]
  11. Mol Biol Evol. 2018 Sep 1;35(9):2170-2184 [PMID: 29893911]
  12. Curr Opin Microbiol. 2015 Dec;28:115-21 [PMID: 26590774]
  13. Cold Spring Harb Symp Quant Biol. 2009;74:403-18 [PMID: 20375319]
  14. Front Microbiol. 2019 Jun 28;10:1484 [PMID: 31316495]
  15. Cell Host Microbe. 2020 Jul 8;28(1):12-22 [PMID: 32645351]
  16. Cell Microbiol. 2004 Mar;6(3):235-42 [PMID: 14764107]
  17. Front Immunol. 2017 Sep 26;8:1166 [PMID: 29018440]
  18. Mol Biol Evol. 2009 Apr;26(4):937-49 [PMID: 19179655]
  19. Proc Biol Sci. 2006 Sep 7;273(1598):2233-9 [PMID: 16901844]
  20. Science. 2018 Sep 21;361(6408): [PMID: 30237322]
  21. Methods Mol Biol. 2014;1079:155-70 [PMID: 24170401]
  22. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  23. PLoS One. 2017 Nov 14;12(11):e0187940 [PMID: 29136663]
  24. Sci Rep. 2017 Jan 20;7:40878 [PMID: 28106112]
  25. Anim Nutr. 2018 Jun;4(2):151-159 [PMID: 30140754]
  26. Proc Biol Sci. 2020 Feb 12;287(1920):20192754 [PMID: 32075531]
  27. Curr Opin Microbiol. 2013 Feb;16(1):17-22 [PMID: 23290772]
  28. Mucosal Immunol. 2019 Jan;12(1):1-9 [PMID: 29988120]
  29. Cell Host Microbe. 2016 Apr 13;19(4):550-9 [PMID: 27053168]
  30. Nature. 2008 Nov 27;456(7221):507-10 [PMID: 18987631]
  31. Mol Biol Evol. 2020 Jul 1;37(7):1847-1854 [PMID: 32145026]
  32. BMC Microbiol. 2013 Mar 25;13:67 [PMID: 23530934]
  33. Nature. 2004 Oct 7;431(7009):693-6 [PMID: 15470429]
  34. Nat Biotechnol. 2021 Apr;39(4):499-509 [PMID: 33169036]
  35. Eur J Nutr. 2018 Feb;57(1):1-24 [PMID: 28393285]
  36. J Exp Med. 2003 Nov 17;198(10):1563-72 [PMID: 14623910]
  37. Exp Mol Med. 2017 Sep 1;49(9):e373 [PMID: 28860663]
  38. Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9247-52 [PMID: 15956202]
  39. Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20591-20597 [PMID: 31548380]
  40. Nature. 2018 Aug;560(7719):489-493 [PMID: 30089902]
  41. Mol Plant Microbe Interact. 2014 Jul;27(7):603-10 [PMID: 24654978]
  42. Pediatrics. 2007 Mar;119(3):e724-32 [PMID: 17332189]
  43. PLoS Biol. 2012;10(11):e1001424 [PMID: 23185130]
  44. J Biol Chem. 2010 Apr 16;285(16):12149-58 [PMID: 20164175]
  45. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19374-9 [PMID: 23112184]
  46. Mol Biol Evol. 2020 Jun 1;37(6):1708-1726 [PMID: 32096861]
  47. Philos Trans R Soc Lond B Biol Sci. 2010 Sep 12;365(1553):2627-33 [PMID: 20679107]
  48. J Evol Biol. 2006 Jul;19(4):1283-93 [PMID: 16780529]
  49. Nature. 2013 Dec 19;504(7480):451-5 [PMID: 24226773]
  50. Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14391-14394 [PMID: 31311888]
  51. Mol Biol Evol. 2005 May;22(5):1208-22 [PMID: 15703242]
  52. ISME J. 2015 Jul;9(7):1543-56 [PMID: 25514534]
  53. Cell Host Microbe. 2017 Sep 13;22(3):411-419.e4 [PMID: 28910638]
  54. Nat Commun. 2019 Dec 11;10(1):5650 [PMID: 31827095]
  55. Sci Immunol. 2023 Jan 6;8(79):eabq7001 [PMID: 36608151]
  56. Infect Immun. 1986 Jul;53(1):141-8 [PMID: 2873103]
  57. Curr Biol. 2019 Jun 3;29(11):R538-R544 [PMID: 31163167]
  58. Nat Ecol Evol. 2019 Jul;3(7):1018-1029 [PMID: 31239554]
  59. Sci Rep. 2016 Jan 07;6:19046 [PMID: 26738735]
  60. Infect Immun. 1993 Jun;61(6):2273-6 [PMID: 8500868]
  61. PLoS Pathog. 2015 Jan 15;11(1):e1004483 [PMID: 25590430]
  62. Infect Immun. 2008 Mar;76(3):1282-8 [PMID: 18174340]
  63. Front Physiol. 2018 Dec 20;9:1836 [PMID: 30618841]
  64. Nat Rev Microbiol. 2012 Dec;10(12):828-40 [PMID: 23154261]
  65. J Exp Med. 2006 Apr 17;203(4):973-84 [PMID: 16606665]
  66. J Biol Chem. 2014 Jul 4;289(27):19231-44 [PMID: 24841205]
  67. Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13 [PMID: 2700931]
  68. Science. 2015 Sep 4;349(6252):1101-1106 [PMID: 26229116]
  69. Mol Microbiol. 2019 Nov;112(5):1519-1530 [PMID: 31444817]
  70. BMC Microbiol. 2018 Jul 11;18(1):68 [PMID: 29996774]
  71. Eur J Cancer Prev. 1997 Mar;6 Suppl 1:S43-5 [PMID: 9167138]
  72. Annu Rev Genet. 2013;47:247-73 [PMID: 24016192]
  73. J Evol Biol. 2004 Sep;17(5):1058-72 [PMID: 15312078]
  74. Nat Immunol. 2003 Dec;4(12):1247-53 [PMID: 14625549]
  75. Nat Rev Microbiol. 2004 Aug;2(8):632-42 [PMID: 15263898]
  76. BMC Bioinformatics. 2006 Feb 23;7:88 [PMID: 16504105]
  77. J Evol Biol. 2009 Nov;22(11):2192-200 [PMID: 19732256]
  78. Cell. 2006 Feb 24;124(4):783-801 [PMID: 16497588]
  79. Mol Biol Evol. 2018 Mar 1;35(3):773-777 [PMID: 29301006]
  80. Am J Physiol Gastrointest Liver Physiol. 2006 Jun;290(6):G1157-63 [PMID: 16439468]
  81. PLoS Pathog. 2011 Aug;7(8):e1002206 [PMID: 21901099]
  82. Science. 2012 Jun 8;336(6086):1268-73 [PMID: 22674334]
  83. Science. 2015 Jan 9;347(6218):170-5 [PMID: 25574022]
  84. Cell. 2004 Jul 23;118(2):229-41 [PMID: 15260992]
  85. Front Microbiol. 2016 Dec 02;7:1945 [PMID: 27994578]
  86. PLoS Biol. 2022 Jun 3;20(6):e3001626 [PMID: 35658016]
  87. PLoS One. 2013 Jul 23;8(7):e68919 [PMID: 23935906]
  88. Mol Biol Evol. 2010 Sep;27(9):2172-86 [PMID: 20410160]
  89. Am Nat. 2006 Jun;167(6):808-25 [PMID: 16685633]
  90. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  91. BMC Evol Biol. 2019 Dec 2;19(1):221 [PMID: 31791244]
  92. J Theor Biol. 1964 Jul;7(1):1-16 [PMID: 5875341]
  93. Evolution. 1966 Sep;20(3):249-275 [PMID: 28562970]
  94. Nucleic Acids Res. 2019 Jan 8;47(D1):D631-D636 [PMID: 30256983]
  95. Genes (Basel). 2018 Nov 13;9(11): [PMID: 30428546]
  96. Mol Immunol. 2008 Mar;45(5):1298-307 [PMID: 17964652]
  97. mBio. 2019 Feb 5;10(1): [PMID: 30723123]
  98. BMC Evol Biol. 2011 Dec 20;11:368 [PMID: 22185391]
  99. Am J Physiol Cell Physiol. 2015 Sep 15;309(6):C350-60 [PMID: 26179603]
  100. Proc Natl Acad Sci U S A. 2021 Feb 9;118(6): [PMID: 33526674]
  101. Syst Biol. 2015 Jan;64(1):127-36 [PMID: 25209222]
  102. Gut Microbes. 2020 May 3;11(3):364-380 [PMID: 29494278]
  103. Nature. 1995 Oct 12;377(6549):520-2 [PMID: 7566147]
  104. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11862-11863 [PMID: 32467160]
  105. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10593-7 [PMID: 16027372]
  106. PLoS Biol. 2020 Mar 20;18(3):e3000661 [PMID: 32196484]
  107. Science. 2018 Nov 30;362(6418): [PMID: 30498100]
  108. Nature. 2017 Aug 2;548(7665):43-51 [PMID: 28770836]

Grants

  1. /Wellcome Trust
  2. 209397/Z/17/Z/Wellcome Trust

MeSH Term

Animals
Bacteria
Biological Evolution
Microbiota
Phylogeny
Symbiosis

Word Cloud

Created with Highcharts 10.0.0evolutionhostcontrolsymbiontscancooperationmutualbenefitsmodelsystemsmicrobiomesymbiontcounterimmunebacteriaflagellaHumansmanyspeciesdiverseoftensuggestedhost-microberelationshipsaloneexplaincooperativeevaluatehypothesisevolutionarymodellingpredictsinsufficientdrivelikehumancompetitionHoweveremergehostsexertlongconstraintslimittestgenomicdatatwobacterialtraitsmonitoredanimalcasesevolvedpredictedtendinglosemaintainbutyrateproductionhost-associatedMoreoveranalysisretainsupportsviatoll-likereceptor5limitsworkputsmechanismsincludingsystemcentreHostmicrobiomes

Similar Articles

Cited By