Development of a robot-assisted thoracic surgery (RATS) program. Lessons learned after 2500 cases.

Luis Herrera, Juan Escalon, Matthew Johnston, Alexis Sanchez, Renata Sanchez, Ivan Mogollon
Author Information
  1. Luis Herrera: Cardiothoracic Surgeon, Orlando Regional Medical Center (ORMC), Rod Taylor Thoracic Cancer Care Center, Orlando Health, Orlando, FL, USA.
  2. Juan Escalon: Cardiothoracic Surgeon, Orlando Regional Medical Center (ORMC), Rod Taylor Thoracic Cancer Care Center, Orlando Health, Orlando, FL, USA.
  3. Matthew Johnston: Cardiothoracic Surgeon, Orlando Regional Medical Center (ORMC), Rod Taylor Thoracic Cancer Care Center, Orlando Health, Orlando, FL, USA.
  4. Alexis Sanchez: Corporate Director Robotic Surgery Program, Orlando Health, Orlando, FL, USA.
  5. Renata Sanchez: Research Fellow, Robotic Surgery Program ORMC, Orlando Health, Orlando, FL, USA.
  6. Ivan Mogollon: Research Fellow, Robotic Surgery Program ORMC, Orlando Health, Orlando, FL, USA. Ivanrenemogollon15@gmail.com. ORCID

Abstract

Robotic surgery provides significant advantages in terms of an optimal three-dimensional and magnified view of the surgical field, superior maneuverability of surgical instruments, removal of surgeon's tremor and excellent ergonomics. Nonetheless, the adoption of this technology in thoracic surgery has been slower than in other specialties such as urology, gynecology or digestive surgery. In this article we describe our institution's experience in robotic-assisted thoracic surgery (RATS) in the span from 2012 to 2020. During this time the average annual growth of the program has been 55%. Among the most frequently procedures performed were lobectomies, wedge resection and segmentectomies. Surgical time and length of stay decreased as the number of procedures performed increased, relative to the learning curve. Additional important elements considered relevant to the success of the program are the resources available, leadership, motivation of the surgical team, adequate and stepwise training, as well as the collection of data for periodic analysis of results. All those initiatives have led to a relevant improvement of financial variables reflecting a cost reduction.

Keywords

References

  1. Chung G, Hinoul P, Coplan P, Yoo A (2020) Trends in the diffusion of robotic surgery in prostate, uterus, and colorectal procedures: a retrospective population-based study. J Robot Surg 15(2):275–291. https://doi.org/10.1007/S11701-020-01102-6 [DOI: 10.1007/S11701-020-01102-6]
  2. Melfi FMA, Menconi GF, Mariani AM, Angeletti CA (2002) Early experience with robotic technology for thoracoscopic surgery. Eur J Cardiothorac Surg 21(5):864–868. https://doi.org/10.1016/S1010-7940(02)00102-1/2/21-5-864-TBL001.GIF [DOI: 10.1016/S1010-7940(02)00102-1/2/21-5-864-TBL001.GIF]
  3. Shahin GMM, Bruinsma GJBB, Stamenkovic S, Cuesta MA (2019) Training in robotic thoracic surgery—the European way. Ann Cardiothorac Surg 8(2):20209–20209. https://doi.org/10.3978/16558 [DOI: 10.3978/16558]
  4. Terra RM et al (2019) Building a large robotic thoracic surgery program in an emerging country: experience in Brazil. World J Surg 43(11):2920–2926. https://doi.org/10.1007/S00268-019-05086-9 [DOI: 10.1007/S00268-019-05086-9]
  5. Gossot D, Seguin-Givelet A (2018) Video-assisted thoracic surgery (VATS) major pulmonary resections: different approaches and focus on the full thoracoscopic fissure-based technique. Shanghai Chest. https://doi.org/10.21037/SHC.2018.03.06 [DOI: 10.21037/SHC.2018.03.06]
  6. Cerfolio RJ, Bryant AS (2013) How to teach robotic pulmonary resection. Semin Thorac Cardiovasc Surg 25(1):76–82. https://doi.org/10.1053/J.SEMTCVS.2013.01.004 [DOI: 10.1053/J.SEMTCVS.2013.01.004]
  7. Luthringer T, Aleksic I, Caire A, Albala DM (2012) Developing a successful robotics program. Curr Opin Urol 22(1):40–46. https://doi.org/10.1097/MOU.0B013E32834D5455 [DOI: 10.1097/MOU.0B013E32834D5455]
  8. Cerfolio RJ, Bryant AS, Minnich DJ (2011) Starting a robotic program in general thoracic surgery: why, how, and lessons learned. Ann Thorac Surg 91(6):1729–1737. https://doi.org/10.1016/J.ATHORACSUR.2011.01.104 [DOI: 10.1016/J.ATHORACSUR.2011.01.104]
  9. Cerfolio RJ, Bryant AS, Skylizard L, Minnich DJ (2011) Initial consecutive experience of completely portal robotic pulmonary resection with 4 arms. J Thorac Cardiovasc Surg 142(4):740–746. https://doi.org/10.1016/J.JTCVS.2011.07.022 [DOI: 10.1016/J.JTCVS.2011.07.022]
  10. Reddy RM, Gorrepati ML, Oh DS, Mehendale S, Reed MF (2018) Robotic-assisted versus thoracoscopic lobectomy outcomes from high-volume thoracic surgeons. Ann Thorac Surg 106(3):902–908. https://doi.org/10.1016/J.ATHORACSUR.2018.03.048 [DOI: 10.1016/J.ATHORACSUR.2018.03.048]
  11. Gonsenhauser I, Abaza R, Mekhjian H, Moffatt-Bruce SD (2012) Developing a multidisciplinary robotic surgery quality assessment program. J Healthc Qual 34(3):43–53. https://doi.org/10.1111/J.1945-1474.2012.00205.X [DOI: 10.1111/J.1945-1474.2012.00205.X]
  12. Kajiwara N et al (2018) Cost-benefit performance simulation of robot-assisted thoracic surgery as required for financial viability under the 2016 revised reimbursement paradigm of the Japanese national health insurance system. Ann Thorac Cardiovasc Surg 24(2):73–80. https://doi.org/10.5761/ATCS.OA.17-00094 [DOI: 10.5761/ATCS.OA.17-00094]
  13. Giedelman C et al (2020) Establishing a successful robotic surgery program and improving operating room efficiency: literature review and our experience report. J Robot Surg 15(3):435–442. https://doi.org/10.1007/S11701-020-01121-3 [DOI: 10.1007/S11701-020-01121-3]
  14. Estes SJ, Goldenberg D, Winder JS, Juza RM, Lyn-Sue JR (2017) Best practices for robotic surgery programs. JSLS. https://doi.org/10.4293/JSLS.2016.00102 [DOI: 10.4293/JSLS.2016.00102]
  15. Pereira-Arias JG et al (2019) How to build a robotic program. Arch Esp Urol 72(3):227–238 [PMID: 30945649]
  16. Lee DJ, Ding J, Guzzo TJ (2019) Improving operating room efficiency. Curr Urol Rep 20(6):1–8. https://doi.org/10.1007/S11934-019-0895-3 [DOI: 10.1007/S11934-019-0895-3]
  17. Garbens A, Lay AH, Steinberg RL, Gahan JC (2020) Experienced bedside-assistants improve operative outcomes for surgeons early in their learning curve for robot assisted laparoscopic radical prostatectomy. J Robot Surg 15(4):619–626. https://doi.org/10.1007/S11701-020-01146-8 [DOI: 10.1007/S11701-020-01146-8]
  18. Sanchez A et al (2022) Robotic surgery: financial impact of surgical trays optimization in bariatric and thoracic surgery. J Robot Surg. https://doi.org/10.1007/S11701-022-01412-X [DOI: 10.1007/S11701-022-01412-X]
  19. Greenberg JA, Schwarz E, Paige J, Dort J, Bachman S (2021) At-home hands-on surgical training during COVID19: proof of concept using a virtual telementoring platform. Surg Endosc 35(5):1963–1969. https://doi.org/10.1007/S00464-021-08470-6/TABLES/2 [DOI: 10.1007/S00464-021-08470-6/TABLES/2]
  20. Melfi FMA, Mussi A (2008) Robotically assisted lobectomy: learning curve and complications. Thorac Cardiovasc Surg 18(3):289–295. https://doi.org/10.1016/J.THORSURG.2008.06.001 [DOI: 10.1016/J.THORSURG.2008.06.001]
  21. Gharagozloo F, Margolis M, Tempesta B, Strother E, Najam F (2009) Robot-assisted lobectomy for early-stage lung cancer: report of 100 consecutive cases. Ann Thorac Surg 88(2):380–384. https://doi.org/10.1016/J.ATHORACSUR.2009.04.039 [DOI: 10.1016/J.ATHORACSUR.2009.04.039]
  22. Bilgic E et al (2017) Effectiveness of telementoring in surgery compared with on-site mentoring: a systematic review. Surgical Innovation 24(4):379–385. https://doi.org/10.1177/1553350617708725 [DOI: 10.1177/1553350617708725]
  23. Nguyen DM et al (2020) Clinical and economic comparative effectiveness of robotic-assisted, video-assisted thoracoscopic, and open lobectomy. J Thorac Dis 12(3):296–306. https://doi.org/10.21037/JTD.2020.01.40 [DOI: 10.21037/JTD.2020.01.40]

MeSH Term

Humans
Robotic Surgical Procedures
Thoracic Surgery
Robotics
Thoracic Surgical Procedures
Pneumonectomy

Word Cloud

Created with Highcharts 10.0.0surgerysurgicalthoracicRATSprogramRobotictimeproceduresperformedrelevantprovidessignificantadvantagestermsoptimalthree-dimensionalmagnifiedviewfieldsuperiormaneuverabilityinstrumentsremovalsurgeon'stremorexcellentergonomicsNonethelessadoptiontechnologyslowerspecialtiesurologygynecologydigestivearticledescribeinstitution'sexperiencerobotic-assistedspan20122020averageannualgrowth55%AmongfrequentlylobectomieswedgeresectionsegmentectomiesSurgicallengthstaydecreasednumberincreasedrelativelearningcurveAdditionalimportantelementsconsideredsuccessresourcesavailableleadershipmotivationteamadequatestepwisetrainingwellcollectiondataperiodicanalysisresultsinitiativesledimprovementfinancialvariablesreflectingcostreductionDevelopmentrobot-assistedLessonslearned2500casesThoracicVATS

Similar Articles

Cited By (5)