Functional Genomics Identified Novel Genes Involved in Growth at Low Temperatures in Listeria monocytogenes.

Yansha Wu, Xinxin Pang, Xiayu Liu, Yajing Wu, Xinglin Zhang
Author Information
  1. Yansha Wu: Department of Food Science and Nutrition, Zhejiang Universitygrid.13402.34, Hangzhou, China.
  2. Xinxin Pang: Department of Food Science and Nutrition, Zhejiang Universitygrid.13402.34, Hangzhou, China.
  3. Xiayu Liu: Department of Food Science and Nutrition, Zhejiang Universitygrid.13402.34, Hangzhou, China.
  4. Yajing Wu: Department of Food Science and Nutrition, Zhejiang Universitygrid.13402.34, Hangzhou, China.
  5. Xinglin Zhang: Department of Food Science and Nutrition, Zhejiang Universitygrid.13402.34, Hangzhou, China. ORCID

Abstract

Listeria monocytogenes (Lm) is a foodborne pathogen that can cause severe human illness. Standard control measures for restricting bacterial growth, such as refrigeration, are often inadequate as Lm grows well at low temperatures. To identify genes involved in growth at low temperatures, a powerful functional genomics method Tn-seq was performed in this study. This genome-wide screening comprehensively identified the known and novel genetic determinants involved in low-temperature growth. A novel gene , encoding rRNA methyltransferase, was identified to play an essential role in Lm growth at 16°C. In contrast, the inactivation of , a gene encoding the terminase of phage A118, significantly enhanced the growth of Lm at 16°C. The deletion of or resulted in cell morphology alterations and impaired the growth rate in milk and other conditions at low temperatures. Transcriptomic analysis revealed that the Δ and Δ mutants exhibited altered transcriptional patterns compared to the wild-type strain at 16°C with significant differences in genes involved in ribosome structural stability and function, and membrane biogenesis, respectively. This work uncovered novel genetic determinants involved in Lm growth at 16°C, which could lead to a better understanding of how bacteria survive and multiply at low temperatures. Furthermore, these findings could potentially contribute to developing novel antibacterial strategies under low-temperature conditions. Listeria monocytogenes is a Gram-positive pathogen that contributes to foodborne outbreaks due to its ability to survive at low temperatures. However, the genetic determinants of Lm involved in growth at low temperatures have not been fully defined. Here, the genetic determinants involved in the low-temperature growth of Lm were comprehensively identified on a genome-wide scale by Tn-seq. The gene , encoding rRNA methyltransferase, was identified essential for growth under low-temperature conditions. On the other hand, the gene , encoding terminase of phage A118, plays a negative role in bacterial growth at low temperatures. The transcriptomic analysis revealed the potential mechanisms. These findings lead to a better understanding of how bacteria survive and multiply at low temperatures and could provide unique targets for novel antibacterial strategies under low-temperature conditions.

Keywords

References

  1. PLoS Pathog. 2020 Jun 3;16(6):e1008566 [PMID: 32492066]
  2. J Appl Microbiol. 2021 Oct;131(4):2019-2032 [PMID: 33660914]
  3. PLoS Pathog. 2021 Mar 8;17(3):e1009116 [PMID: 33684178]
  4. Front Cell Infect Microbiol. 2021 Feb 19;11:608352 [PMID: 33680989]
  5. Nat Rev Microbiol. 2016 Feb;14(2):119-28 [PMID: 26775926]
  6. Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2120352119 [PMID: 35357969]
  7. Appl Environ Microbiol. 2002 Apr;68(4):1697-705 [PMID: 11916687]
  8. J Microbiol Biotechnol. 2020 Feb 28;30(2):259-270 [PMID: 31838794]
  9. Crit Rev Food Sci Nutr. 2009 Mar;49(3):237-53 [PMID: 19093268]
  10. Virulence. 2021 Dec;12(1):2509-2545 [PMID: 34612177]
  11. Int J Food Microbiol. 2021 May 16;346:109149 [PMID: 33756283]
  12. Appl Environ Microbiol. 2007 Oct;73(20):6484-98 [PMID: 17720827]
  13. Annu Rev Genet. 2021 Nov 23;55:377-400 [PMID: 34530639]
  14. Front Microbiol. 2017 Nov 14;8:2221 [PMID: 29187836]
  15. J Appl Microbiol. 2006 Jun;100(6):1289-98 [PMID: 16696676]
  16. J Bacteriol. 1997 Apr;179(8):2707-16 [PMID: 9098070]
  17. Int J Med Microbiol. 2012 Mar;302(2):84-7 [PMID: 22417616]
  18. Infect Immun. 2021 Jul 15;89(8):e0071320 [PMID: 34031124]
  19. Front Nutr. 2019 Jun 14;6:89 [PMID: 31259174]
  20. J Food Prot. 2006 Jun;69(6):1473-84 [PMID: 16786878]
  21. Cell. 2012 Aug 17;150(4):792-802 [PMID: 22901809]
  22. Front Genet. 2018 Feb 26;9:35 [PMID: 29535759]
  23. PLoS Pathog. 2019 Nov 18;15(11):e1007862 [PMID: 31738809]
  24. EMBO Rep. 2014 May;15(5):508-17 [PMID: 24671034]
  25. Biochem Biophys Res Commun. 2014 Jun 6;448(3):298-302 [PMID: 24796671]
  26. Foodborne Pathog Dis. 2020 Feb;17(2):119-125 [PMID: 31556722]
  27. BMC Genomics. 2012 Apr 24;13:144 [PMID: 22530965]
  28. Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):253-269 [PMID: 30572123]
  29. J Dairy Sci. 2008 Feb;91(2):523-30 [PMID: 18218738]
  30. PLoS One. 2012;7(8):e43444 [PMID: 22927968]
  31. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  32. Microbes Infect. 2005 Mar;7(3):335-48 [PMID: 15777740]
  33. Front Microbiol. 2018 Aug 31;9:2050 [PMID: 30233532]
  34. Microbiology (Reading). 1996 Apr;142 ( Pt 4):985-992 [PMID: 8936325]
  35. Front Microbiol. 2016 May 03;7:631 [PMID: 27199957]
  36. J Dairy Sci. 2020 Jan;103(1):176-178 [PMID: 31733864]
  37. Front Microbiol. 2016 Mar 01;7:229 [PMID: 26973610]
  38. Curr Microbiol. 2012 Jul;65(1):35-43 [PMID: 22526570]
  39. J Food Prot. 2010 Feb;73(2):312-21 [PMID: 20132677]
  40. Int J Food Microbiol. 2019 May 2;296:83-92 [PMID: 30851644]
  41. Adv Mater. 2020 Jan;32(3):e1805945 [PMID: 31045287]
  42. J Proteomics. 2010 Sep 10;73(10):2021-30 [PMID: 20620249]
  43. Int J Food Microbiol. 2016 Aug 16;231:16-25 [PMID: 27174678]
  44. J Infect Dis. 2016 Jul 15;214(2):189-95 [PMID: 26984142]
  45. Nat Rev Microbiol. 2013 Jul;11(7):435-42 [PMID: 23712350]
  46. Genes (Basel). 2021 Mar 25;12(4): [PMID: 33806186]
  47. Food Microbiol. 2011 Aug;28(5):1095-100 [PMID: 21569957]
  48. Food Res Int. 2020 Nov;137:109405 [PMID: 33233092]
  49. Nat Rev Microbiol. 2018 Jan;16(1):32-46 [PMID: 29176582]
  50. Microbiol Resour Announc. 2021 Jan 7;10(1): [PMID: 33414304]
  51. Appl Environ Microbiol. 2014 Jan;80(1):399-407 [PMID: 24185852]
  52. Mol Microbiol. 2000 Jan;35(2):324-40 [PMID: 10652093]

MeSH Term

Anti-Bacterial Agents
Bacterial Proteins
Cold Temperature
Genes, Bacterial
Genomics
Listeria monocytogenes
Methyltransferases

Chemicals

Anti-Bacterial Agents
Bacterial Proteins
Methyltransferases

Word Cloud

Created with Highcharts 10.0.0growthlowtemperaturesLminvolvednovellow-temperatureListeriamonocytogenesidentifiedgeneticdeterminantsgeneencoding16°CconditionsTn-seqrRNAmethyltransferasesurvivefoodbornepathogenbacterialgenesgenome-widecomprehensivelyessentialroleterminasephageA118analysisrevealedΔribosomeleadbetterunderstandingbacteriamultiplyfindingsantibacterialstrategiescancauseseverehumanillnessStandardcontrolmeasuresrestrictingrefrigerationofteninadequategrowswellidentifypowerfulfunctionalgenomicsmethodperformedstudyscreeningknownplaycontrastinactivationsignificantlyenhanceddeletionresultedcellmorphologyalterationsimpairedratemilkTranscriptomicmutantsexhibitedalteredtranscriptionalpatternscomparedwild-typestrainsignificantdifferencesstructuralstabilityfunctionmembranebiogenesisrespectivelyworkuncoveredFurthermorepotentiallycontributedevelopingGram-positivecontributesoutbreaksdueabilityHoweverfullydefinedscalehandplaysnegativetranscriptomicpotentialmechanismsprovideuniquetargetsFunctionalGenomicsIdentifiedNovelGenesInvolvedGrowthLowTemperatureslmo1366lmo2301temperature

Similar Articles

Cited By