Breaking the nanoparticle's dispersible limit via rotatable surface ligands.

Yue Liu, Na Peng, Yifeng Yao, Xuan Zhang, Xianqi Peng, Liyan Zhao, Jing Wang, Liang Peng, Zuankai Wang, Kenji Mochizuki, Min Yue, Shikuan Yang
Author Information
  1. Yue Liu: Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
  2. Na Peng: Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
  3. Yifeng Yao: Department of Chemistry, Zhejiang University, Hangzhou, 310028, China.
  4. Xuan Zhang: Department of Chemistry, Zhejiang University, Hangzhou, 310028, China. ORCID
  5. Xianqi Peng: Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
  6. Liyan Zhao: Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
  7. Jing Wang: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. ORCID
  8. Liang Peng: Deparment of Mechanical Engineering, City University of Hongkong, Hongkong, 999077, China.
  9. Zuankai Wang: Deparment of Mechanical Engineering, City University of Hongkong, Hongkong, 999077, China. ORCID
  10. Kenji Mochizuki: Department of Chemistry, Zhejiang University, Hangzhou, 310028, China. kenji_mochizuki@zju.edu.cn. ORCID
  11. Min Yue: Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China. myue@zju.edu.cn. ORCID
  12. Shikuan Yang: Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China. shkyang@zju.edu.cn. ORCID

Abstract

Achieving versatile dispersion of nanoparticles in a broad range of solvents (e.g., water, oil, and biofluids) without repeatedly recourse to chemical modifications are desirable in optoelectronic devices, self-assembly, sensing, and biomedical fields. However, such a target is limited by the strategies used to decorate nanoparticle's surface properties, leading to a narrow range of solvents for existing nanoparticles. Here we report a concept to break the nanoparticle's dispersible limit via electrochemically anchoring surface ligands capable of sensing the surrounding liquid medium and rotating to adapt to it, immediately forming stable dispersions in a wide range of solvents (polar and nonpolar, biofluids, etc.). Moreover, the smart nanoparticles can be continuously electrodeposited in the electrolyte, overcoming the electrode surface-confined low throughput limitation of conventional electrodeposition methods. The anomalous dispersive property of the smart Ag nanoparticles enables them to resist bacteria secreted species-induced aggregation and the structural similarity of the surface ligands to that of the bacterial membrane assists them to enter the bacteria, leading to high antibacterial activity. The simple but massive fabrication process and the enhanced dispersion properties offer great application opportunities to the smart nanoparticles in diverse fields.

References

  1. Garcia de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021). [PMID: 34353926]
  2. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006). [PMID: 16397494]
  3. Howes, P. D., Chandrawati, R. & Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014). [PMID: 25278614]
  4. Boyoglu-Barnum, S. et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 592, 623–628 (2021). [PMID: 33762730]
  5. Israelachvili, J. N. Intermolecular and Surface Forces. 3rd edn, 1–674 (Elsevier Academic, 2011).
  6. Sperling, R. A. & Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. A 368, 1333–1383 (2010). [DOI: 10.1098/rsta.2009.0273]
  7. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016). [PMID: 26796733]
  8. Heuer-Jungemann, A. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 119, 4819–4880 (2019). [PMID: 30920815]
  9. Moore, T. L. et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44, 6287–6305 (2015). [PMID: 26056687]
  10. Maeta, N., Kamiya, H. & Okada, Y. Direct monitoring of molecular events at the surface: one-step access to flexibly stable colloidal Ag nanoparticles. Langmuir 34, 5495–5504 (2018). [PMID: 29683673]
  11. Cohen Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010). [DOI: 10.1038/nmat2614]
  12. Yang, S. K. et al. Ultra-antireflective synthetic brochosomes. Nat. Commun. 8, 1285 (2017). [PMID: 29101358]
  13. Wang, Y. L. et al. Electrocarving during electrodeposition growth. Adv. Mater. 30, 1805686 (2018). [DOI: 10.1002/adma.201805686]
  14. Liu, Y., Zhao, L. Y., Lin, J. J. & Yang, S. K. Electrodeposited surfaces with reversibly switching interfacial properties. Sci. Adv. 5, eaax0380 (2019). [PMID: 31701000]
  15. Zheng, J. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). [PMID: 31672899]
  16. Liu, Y., Gokcen, D., Bertocci, U. & Moffat, T. P. Self-terminating growth of platinum films by electrochemical deposition. Science 338, 1327–1330 (2012). [PMID: 23224552]
  17. Siegfried, M. J. & Choi, K. S. Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater. 16, 1743–1746 (2004). [DOI: 10.1002/adma.200400177]
  18. Mahenderkar, N. K. et al. Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics. Science 355, 1203–1206 (2017). [PMID: 28302857]
  19. Kraemer, E. O. & Dexter, S. T. The light-scattering capacity (Tyndall effect) and colloidal behaviour of gelatin sols and gels. J. Phys. Chem. 31, 764–782 (1927). [DOI: 10.1021/j150275a014]
  20. Lee, K.-S. & El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220–19225 (2006). [PMID: 17004772]
  21. Dorain, P. B., Vonraben, K. U., Chang, R. K. & Laube, B. L. Catalytic formation of SO and SO from SO on silver observed by surface-enhanced Raman scattering. Chem. Phys. Lett. 84, 405–409 (1981). [DOI: 10.1016/0009-2614(81)80373-9]
  22. Pagannone, M., Quagliano, L. G., Mattioli, L. & Mattei, G. Surface-enhanced Raman-spectroscopy of silver etched by CrO-HSO: study of adsorbed sulphate. J. Raman Spectrosc. 22, 825–829 (1991). [DOI: 10.1002/jrs.1250221216]
  23. Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019). [PMID: 31723289]
  24. Xia, X. H., Zeng, J., Oetjen, L. K., Li, Q. G. & Xia, Y. N. Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals. J. Am. Chem. Soc. 134, 1793–1801 (2012). [PMID: 22206387]
  25. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008). [PMID: 18497851]
  26. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007). [PMID: 17067281]
  27. Kah, J. C., Zubieta, A., Saavedra, R. A. & Hamad-Schifferli, K. Stability of gold nanorods passivated with amphiphilic ligands. Langmuir 28, 8834–8844 (2012). [PMID: 22360489]
  28. Zheng, Y. Q., Zhong, X. L., Li, Z. Y. & Xia, Y. N. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm. Part. Part. Syst. Charact. 31, 266–273 (2014). [DOI: 10.1002/ppsc.201300256]
  29. Holler, F. & Callis, J. B. Conformation of the hydrocarbon chains of sodium dodecyl-sulfate molecules in micelles—an FTIR study. J. Phys. Chem. 93, 2053–2058 (1989). [DOI: 10.1021/j100342a068]
  30. Zrimsek, A. B. et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 117, 7583–7613 (2017). [PMID: 28610424]
  31. Reguera, J., Langer, J., de Aberasturi, D. J. & Liz-Marzan, L. M. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Sov. Rev. 46, 3866–3885 (2017). [DOI: 10.1039/C7CS00158D]
  32. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985). [DOI: 10.1103/RevModPhys.57.783]
  33. Matthews, J. R., Shirazinejad, C. R., Isakson, G. A., Demers, S. M. E. & Hafner, J. H. Structural analysis by enhanced Raman scattering. Nano Lett. 17, 2172–2177 (2017). [PMID: 28166410]
  34. Heo, J. et al. Electro-inductive effect: electrodes as functional groups with tunable electronic properties. Science 370, 214–219 (2020). [PMID: 33033217]
  35. Li, C. Y. et al. Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nat. Nanotechnol. 15, 922–926 (2020). [PMID: 32778804]
  36. Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem. 4, 443–455 (2012). [PMID: 22614378]
  37. Heinz, H., Castelijns, H. J. & Suter, U. W. Structure and phase transitions of alkyl chains on mica. J. Am. Chem. Soc. 125, 9500–9510 (2003). [PMID: 12889981]
  38. Mattoussi, H., Cumming, A. W., Murray, C. B., Bawendi, M. G. & Ober, R. Properties of CdSe nanocrystal dispersions in the dilute regime: structure and interparticle interactions. Phy. Rev. B 58, 7850–7863 (1998). [DOI: 10.1103/PhysRevB.58.7850]
  39. Kumar, A., Vemula, P. K., Ajayan, P. M. & John, G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, 236–241 (2008). [PMID: 18204453]
  40. Richter, A. P. et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 10, 817–823 (2015). [PMID: 26167765]
  41. Panáček, A. et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 13, 65–71 (2018). [PMID: 29203912]
  42. Huber, M. C. et al. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nat. Mater. 14, 125–132 (2015). [PMID: 25362355]
  43. Ci, T. Y. et al. Cryo-shocked cancer cells for targeted drug delivery and vaccination. Sci. Adv. 6, eabc3013 (2020). [PMID: 33298439]
  44. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008). [PMID: 26620784]
  45. Downs, R. T. & Hall-Wallace, M. The American mineralogist crystal structure database. Am. Miner. 88, 247–250 (2003).
  46. Heinz, H., Vaia, R. A., Farmer, B. L. & Naik, R. R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-Jones potentials. J. Phys. Chem. C. 112, 17281–17290 (2008). [DOI: 10.1021/jp801931d]
  47. Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005). [PMID: 16392929]
  48. Jorgensen, W. L. & Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Nat. Acad. Sci. USA 102, 6665–6670 (2005). [PMID: 15870211]
  49. Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J. & Jorgensen, W. L. 1.14*CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations. J. Phys. Chem. B 121, 3864–3870 (2017). [PMID: 28224794]
  50. Dodda, L. S., de Vaca, I. C., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, 1–6 (2017). [DOI: 10.1093/nar/gkx312]

MeSH Term

Electrolytes
Ligands
Metal Nanoparticles
Nanoparticles
Silver
Solvents

Chemicals

Electrolytes
Ligands
Solvents
Silver

Word Cloud

Created with Highcharts 10.0.0nanoparticlessurfacerangesolventsnanoparticle'sligandssmartdispersionbiofluidssensingfieldspropertiesleadingdispersiblelimitviabacteriaAchievingversatilebroadegwateroilwithoutrepeatedlyrecoursechemicalmodificationsdesirableoptoelectronicdevicesself-assemblybiomedicalHowevertargetlimitedstrategiesuseddecoratenarrowexistingreportconceptbreakelectrochemicallyanchoringcapablesurroundingliquidmediumrotatingadaptimmediatelyformingstabledispersionswidepolarnonpolaretcMoreovercancontinuouslyelectrodepositedelectrolyteovercomingelectrodesurface-confinedlowthroughputlimitationconventionalelectrodepositionmethodsanomalousdispersivepropertyAgenablesresistsecretedspecies-inducedaggregationstructuralsimilaritybacterialmembraneassistsenterhighantibacterialactivitysimplemassivefabricationprocessenhancedoffergreatapplicationopportunitiesdiverseBreakingrotatable

Similar Articles

Cited By