Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance.

Angel León-Buitimea, Cesar R Garza-Cárdenas, María Fernanda Román-García, César Agustín Ramírez-Díaz, Martha Ulloa-Ramírez, José Rubén Morones-Ramírez
Author Information
  1. Angel León-Buitimea: Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66455, Mexico. ORCID
  2. Cesar R Garza-Cárdenas: Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66455, Mexico.
  3. María Fernanda Román-García: Centro de Estudios Científicos y Tecnológicos No. 9 "Juan de Dios Bátiz", Instituto Politécnico Nacional, Miguel Hidalgo, Ciudad de México 11400, Mexico. ORCID
  4. César Agustín Ramírez-Díaz: Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), 4 Sur 104 Centro Histórico, Puebla 72000, Mexico.
  5. Martha Ulloa-Ramírez: Centro Universitario de Tonalá, Universidad de Guadalajara (UDG), Guadalajara 45425, Mexico.
  6. José Rubén Morones-Ramírez: Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66455, Mexico. ORCID

Abstract

Since the discovery of antibiotics, humanity has been able to cope with the battle against bacterial infections. However, the inappropriate use of antibiotics, the lack of innovation in therapeutic agents, and other factors have allowed the emergence of new bacterial strains resistant to multiple antibiotic treatments, causing a crisis in the health sector. Furthermore, the World Health Organization has listed a series of pathogens (ESKAPE group) that have acquired new and varied resistance to different antibiotics families. Therefore, the scientific community has prioritized designing and developing novel treatments to combat these ESKAPE pathogens and other emergent multidrug-resistant bacteria. One of the solutions is the use of combinatorial therapies. Combinatorial therapies seek to enhance the effects of individual treatments at lower doses, bringing the advantage of being, in most cases, much less harmful to patients. Among the new developments in combinatorial therapies, nanomaterials have gained significant interest. Some of the most promising nanotherapeutics include polymers, inorganic nanoparticles, and antimicrobial peptides due to their bactericidal and nanocarrier properties. Therefore, this review focuses on discussing the state-of-the-art of the most significant advances and concludes with a perspective on the future developments of nanotherapeutic combinatorial treatments that target bacterial infections.

Keywords

References

  1. Front Med Technol. 2020 Dec 11;2:610997 [PMID: 35047892]
  2. Curr Drug Deliv. 2017;14(8):1114-1119 [PMID: 28302030]
  3. Res Microbiol. 2012 Jul;163(6-7):479-86 [PMID: 22705395]
  4. Bioorg Med Chem Lett. 2014 Sep 15;24(18):4590-4593 [PMID: 25149508]
  5. Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:693-707 [PMID: 30606583]
  6. ACS Appl Mater Interfaces. 2019 Feb 27;11(8):7725-7730 [PMID: 30714714]
  7. Int J Biol Macromol. 2020 Oct 1;160:409-417 [PMID: 32416305]
  8. ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45381-45389 [PMID: 31721554]
  9. Biomed Res Int. 2016;2016:2475067 [PMID: 27274985]
  10. Nanomaterials (Basel). 2016 Jul 22;6(7): [PMID: 28335264]
  11. APMIS. 2010 Nov;118(11):830-6 [PMID: 20955455]
  12. Front Microbiol. 2016 Sep 16;7:1385 [PMID: 27695440]
  13. Colloids Surf B Biointerfaces. 2017 Apr 1;152:85-94 [PMID: 28088016]
  14. Nanomedicine. 2014 Jul;10(5):1097-107 [PMID: 24486464]
  15. Small. 2017 Jul;13(27): [PMID: 28544761]
  16. Acta Biomater. 2014 May;10(5):2096-104 [PMID: 24365706]
  17. Acta Biomater. 2020 Sep 15;114:117-132 [PMID: 32683042]
  18. Burns. 2014 Dec;40 Suppl 1:S3-8 [PMID: 25418435]
  19. Colloids Surf B Biointerfaces. 2010 Jan 1;75(1):1-18 [PMID: 19782542]
  20. J Glob Antimicrob Resist. 2016 Sep;6:118-122 [PMID: 27530853]
  21. J Hazard Mater. 2019 Jul 5;373:122-130 [PMID: 30909137]
  22. Am J Transl Res. 2019 Jul 15;11(7):3919-3931 [PMID: 31396309]
  23. Int J Mol Sci. 2019 Jun 04;20(11): [PMID: 31167476]
  24. J Pathog. 2016;2016:4065603 [PMID: 26942013]
  25. Chem Rev. 2017 Aug 9;117(15):10212-10290 [PMID: 28756658]
  26. Biomaterials. 2015 Jun;52:291-300 [PMID: 25818435]
  27. Polymers (Basel). 2018 Aug 06;10(8): [PMID: 30960803]
  28. RSC Adv. 2019 Jan 9;9(2):1095-1105 [PMID: 35517620]
  29. J Biomed Mater Res B Appl Biomater. 2017 Jul;105(5):1241-1259 [PMID: 26910862]
  30. J Food Sci. 2016 Jun;81(6):M1466-71 [PMID: 27096939]
  31. ACS Appl Mater Interfaces. 2015 Jun 17;7(23):12751-9 [PMID: 25980639]
  32. Polymers (Basel). 2021 Jul 15;13(14): [PMID: 34301085]
  33. Int J Nanomedicine. 2013;8:3187-95 [PMID: 23986635]
  34. Carbohydr Polym. 2016 Mar 15;138:259-64 [PMID: 26794761]
  35. Mater Sci Eng C Mater Biol Appl. 2014 Dec;45:510-8 [PMID: 25491858]
  36. Appl Environ Microbiol. 2011 Apr;77(7):2325-31 [PMID: 21296935]
  37. Int J Biomater. 2016;2016:9753210 [PMID: 27242904]
  38. J Adv Res. 2017 Nov 02;9:1-16 [PMID: 30046482]
  39. PLoS One. 2019 Mar 7;14(3):e0212819 [PMID: 30845148]
  40. PLoS Pathog. 2018 Jun 21;14(6):e1007084 [PMID: 29928049]
  41. Nat Biotechnol. 2013 May;31(5):379-82 [PMID: 23657384]
  42. Carbohydr Polym. 2020 Feb 15;230:115573 [PMID: 31887939]
  43. Int J Biol Macromol. 2019 Dec 1;141:1137-1146 [PMID: 31513853]
  44. ACS Appl Mater Interfaces. 2019 Oct 16;11(41):37381-37396 [PMID: 31517483]
  45. Curr Pharm Des. 2018;24(8):896-903 [PMID: 29468956]
  46. Nanomaterials (Basel). 2011 Jun 14;1(1):31-63 [PMID: 28348279]
  47. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(3):286-327 [PMID: 26072980]
  48. Nanomicro Lett. 2015;7(3):219-242 [PMID: 30464967]
  49. Lancet Infect Dis. 2006 Sep;6(9):589-601 [PMID: 16931410]
  50. Int J Mol Sci. 2019 Jan 21;20(2): [PMID: 30669621]
  51. Int J Mol Sci. 2015 Jan 19;16(1):2099-116 [PMID: 25607734]
  52. Sci Rep. 2018 Jan 15;8(1):798 [PMID: 29335484]
  53. Nanomaterials (Basel). 2020 Apr 20;10(4): [PMID: 32325941]
  54. Asian J Pharm Sci. 2020 Jan;15(1):42-59 [PMID: 32175017]
  55. Polymers (Basel). 2022 Apr 20;14(9): [PMID: 35566830]
  56. Materials (Basel). 2014 May 22;7(5):4057-4087 [PMID: 28788665]
  57. Polymers (Basel). 2019 Nov 01;11(11): [PMID: 31683853]
  58. Life Sci. 2016 May 15;153:171-9 [PMID: 27101926]
  59. Drug Des Devel Ther. 2016 Sep 07;10:2823-2832 [PMID: 27660414]
  60. Front Microbiol. 2016 May 02;7:607 [PMID: 27330535]
  61. Antibiotics (Basel). 2018 Jun 19;7(2): [PMID: 29921822]
  62. Trends Biotechnol. 2013 Mar;31(3):177-84 [PMID: 23333434]
  63. Nature. 2000 Aug 17;406(6797):775-81 [PMID: 10963607]
  64. Int J Nanomedicine. 2017 Nov 10;12:8211-8225 [PMID: 29184409]
  65. Int J Biol Macromol. 2018 May;111:1281-1292 [PMID: 29307808]
  66. Nanomaterials (Basel). 2016 Apr 14;6(4): [PMID: 28335198]
  67. Biomater Sci. 2019 Jun 25;7(7):2833-2840 [PMID: 31066733]
  68. Macromol Biosci. 2017 Feb;17(2): [PMID: 27619320]
  69. J Biomater Sci Polym Ed. 2020 Oct;31(14):1757-1769 [PMID: 32498665]
  70. Int J Clin Pediatr Dent. 2018 Sep-Oct;11(5):446-450 [PMID: 30787561]
  71. Int J Nanomedicine. 2017 Feb 14;12:1227-1249 [PMID: 28243086]
  72. J Nanobiotechnology. 2017 Oct 3;15(1):65 [PMID: 28974225]
  73. Int J Nanomedicine. 2020 Feb 25;15:1267-1281 [PMID: 32161457]
  74. J Wound Care. 2018 Nov 2;27(11):716-721 [PMID: 30398938]
  75. Biol Trace Elem Res. 2020 Jan;193(1):118-129 [PMID: 30982201]
  76. Nanoscale. 2016 Jul 21;8(27):13223-7 [PMID: 27355451]
  77. J Mater Chem B. 2013 Apr 14;1(14):1968-1976 [PMID: 32260910]
  78. Curr Pharm Biotechnol. 2020;21(10):948-954 [PMID: 31994459]
  79. Talanta. 2018 Jul 1;184:537-556 [PMID: 29674080]
  80. J Mater Chem B. 2017 Jun 14;5(22):4084-4096 [PMID: 32264141]
  81. Probiotics Antimicrob Proteins. 2019 Jun;11(2):370-381 [PMID: 30229514]
  82. Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:278-84 [PMID: 25280707]
  83. Curr Opin Microbiol. 2011 Oct;14(5):519-23 [PMID: 21900036]
  84. Pol J Microbiol. 2014;63(1):33-41 [PMID: 25033660]
  85. Infect Drug Resist. 2018 Oct 10;11:1645-1658 [PMID: 30349322]
  86. Eur J Pharm Biopharm. 2007 Aug;67(1):202-10 [PMID: 17337171]
  87. Biomed Mater. 2016 Jun 15;11(3):035015 [PMID: 27305176]
  88. J Biomed Nanotechnol. 2013 Mar;9(3):393-402 [PMID: 23620994]
  89. ACS Nano. 2017 Jun 27;11(6):5737-5745 [PMID: 28531351]
  90. FEMS Microbiol Rev. 2008 Mar;32(2):234-58 [PMID: 18266856]
  91. Mar Drugs. 2018 May 04;16(5): [PMID: 29734657]
  92. Int J Mol Sci. 2019 May 18;20(10): [PMID: 31109079]
  93. Biochim Biophys Acta. 2012 Dec;1820(12):1831-8 [PMID: 22921812]
  94. Trends Mol Med. 2020 Aug;26(8):768-782 [PMID: 32493628]
  95. Fundam Clin Pharmacol. 2020 Feb;34(1):102-108 [PMID: 31313350]
  96. ACS Omega. 2020 May 20;5(21):12027-12034 [PMID: 32548381]
  97. Adv Med Sci. 2012;57(2):196-207 [PMID: 23154427]
  98. Front Microbiol. 2019 Aug 09;10:1703 [PMID: 31447797]
  99. Front Microbiol. 2021 Feb 22;12:616979 [PMID: 33692766]
  100. Front Microbiol. 2020 Jul 24;11:1669 [PMID: 32793156]
  101. ACS Omega. 2017 Oct 31;2(10):7400-7409 [PMID: 30023551]
  102. Int J Nanomedicine. 2013;8:4277-90 [PMID: 24235826]
  103. Acc Chem Res. 2017 Feb 21;50(2):310-319 [PMID: 28068053]
  104. Int J Nanomedicine. 2020 May 14;15:3393-3404 [PMID: 32523339]
  105. Food Chem Toxicol. 2015 Mar;77:58-63 [PMID: 25556118]
  106. Bioconjug Chem. 2018 Sep 19;29(9):3094-3103 [PMID: 30063328]
  107. ScientificWorldJournal. 2014;2014:925494 [PMID: 25436235]
  108. ACS Infect Dis. 2019 Aug 9;5(8):1357-1365 [PMID: 30939869]
  109. ACS Nano. 2013 Nov 26;7(11):9518-25 [PMID: 24274814]
  110. Adv Healthc Mater. 2019 Mar;8(6):e1800854 [PMID: 30480381]
  111. Front Microbiol. 2019 Apr 01;10:539 [PMID: 30988669]
  112. Nanomedicine (Lond). 2018 May;13(10):1093-1106 [PMID: 29873582]
  113. Expert Rev Anti Infect Ther. 2020 Oct;18(10):1021-1032 [PMID: 32536223]
  114. Sci Rep. 2016 Apr 29;6:24929 [PMID: 27125749]
  115. ACS Med Chem Lett. 2017 Jul 07;8(8):853-857 [PMID: 28835801]
  116. Int J Biol Macromol. 2018 Aug;115:643-650 [PMID: 29689285]
  117. IET Nanobiotechnol. 2020 May;14(3):245-252 [PMID: 32338634]
  118. Biomater Res. 2020 Jun 06;24:12 [PMID: 32537239]
  119. Small. 2011 Nov 18;7(22):3113-27 [PMID: 21928301]
  120. AIMS Microbiol. 2018 Jun 26;4(3):482-501 [PMID: 31294229]
  121. Int J Mol Sci. 2021 Apr 27;22(9): [PMID: 33925617]
  122. Microbiol Spectr. 2016 Apr;4(2): [PMID: 27227291]
  123. Clin Transl Med. 2018 Jan 17;7(1):3 [PMID: 29340951]
  124. Polymers (Basel). 2022 Apr 15;14(8): [PMID: 35458361]
  125. Molecules. 2020 Mar 19;25(6): [PMID: 32204541]
  126. Oxid Med Cell Longev. 2019 Nov 20;2019:6740325 [PMID: 31827692]
  127. Biol Trace Elem Res. 2021 May;199(5):2057-2076 [PMID: 32770326]
  128. Appl Environ Microbiol. 2012 Apr;78(8):2768-74 [PMID: 22286985]
  129. Nanomaterials (Basel). 2021 Jul 14;11(7): [PMID: 34361208]
  130. Carbohydr Polym. 2016 Jan 1;135:349-55 [PMID: 26453887]
  131. PLoS Negl Trop Dis. 2013 Oct 17;7(10):e2491 [PMID: 24147170]
  132. ACS Appl Mater Interfaces. 2018 Sep 5;10(35):29398-29406 [PMID: 30085652]
  133. Nature. 2016 Jan 21;529(7586):336-43 [PMID: 26791724]
  134. Nanomedicine. 2007 Jun;3(2):168-71 [PMID: 17468052]
  135. J Appl Biomater Funct Mater. 2019 Jul-Sep;17(3):2280800019851771 [PMID: 31373255]
  136. Biomater Sci. 2014 Aug 30;2(8):1080-1089 [PMID: 32482003]
  137. Bioact Mater. 2020 Jul 02;5(4):963-979 [PMID: 32671291]
  138. Carbohydr Polym. 2014 Jan;99:469-73 [PMID: 24274532]
  139. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):844-851 [PMID: 30879351]
  140. ACS Omega. 2020 Feb 05;5(6):3006-3015 [PMID: 32095724]
  141. Ups J Med Sci. 2014 May;119(2):162-9 [PMID: 24646082]
  142. J Infect Dis. 2004 Oct 15;190(8):1476-80 [PMID: 15378441]
  143. PLoS One. 2019 Nov 8;14(11):e0224904 [PMID: 31703098]
  144. Pharmaceutics. 2021 Oct 26;13(11): [PMID: 34834210]
  145. Environ Sci Technol. 2012 Feb 21;46(4):2242-50 [PMID: 22260395]
  146. Nanomaterials (Basel). 2018 Aug 21;8(9): [PMID: 30134515]
  147. P T. 2015 Apr;40(4):277-83 [PMID: 25859123]
  148. Nat Biotechnol. 2006 Dec;24(12):1551-7 [PMID: 17160061]
  149. Antibiotics (Basel). 2020 Jan 13;9(1): [PMID: 31941022]
  150. Nanotechnol Sci Appl. 2012 Aug 15;5:61-71 [PMID: 24198497]
  151. Front Pharmacol. 2018 Jul 26;9:816 [PMID: 30140226]
  152. Nat Commun. 2020 Aug 11;11(1):4013 [PMID: 32782250]
  153. Int J Pharm. 2019 Jun 30;565:472-480 [PMID: 31071421]
  154. Molecules. 2016 Sep 12;21(9): [PMID: 27626405]
  155. Clin Microbiol Rev. 2015 Apr;28(2):337-418 [PMID: 25788514]
  156. Biochim Biophys Acta. 2006 Sep;1758(9):1408-25 [PMID: 16716248]
  157. Saudi J Biol Sci. 2021 Jan;28(1):928-935 [PMID: 33424384]
  158. Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:1-7 [PMID: 26838816]
  159. Food Sci Biotechnol. 2019 Jun 7;28(6):1861-1869 [PMID: 31807360]
  160. Nanoscale. 2012 Jun 7;4(11):3319-34 [PMID: 22572969]
  161. Part Fibre Toxicol. 2013 Apr 15;10:15 [PMID: 23587290]
  162. Front Microbiol. 2018 Jul 02;9:1441 [PMID: 30013539]
  163. Surg Infect (Larchmt). 2013 Feb;14(1):8-20 [PMID: 23448590]
  164. Int J Mol Sci. 2019 Aug 04;20(15): [PMID: 31382674]
  165. Int J Nanomedicine. 2016 Oct 19;11:5443-5455 [PMID: 27799768]
  166. Int J Nanomedicine. 2019 Apr 10;14:2557-2571 [PMID: 31118605]
  167. Mater Sci Eng C Mater Biol Appl. 2015 Oct;55:343-59 [PMID: 26117765]
  168. Eur J Clin Microbiol Infect Dis. 2015 Jan;34(1):197-204 [PMID: 25169965]
  169. Int J Nanomedicine. 2019 Oct 03;14:7975-7985 [PMID: 31632012]
  170. Pharmacol Ther. 2022 Apr;232:107990 [PMID: 34592202]
  171. Polymers (Basel). 2021 Feb 27;13(5): [PMID: 33673451]
  172. Drug Des Devel Ther. 2017 Mar 22;11:939-946 [PMID: 28356719]
  173. Int J Biol Macromol. 2015 Jan;72:269-81 [PMID: 25020082]
  174. Appl Microbiol Biotechnol. 2019 Nov;103(21-22):8669-8676 [PMID: 31522283]
  175. J Clin Exp Dent. 2016 Dec 1;8(5):e604-e610 [PMID: 27957278]
  176. J Exp Med. 2006 Feb 20;203(2):259 [PMID: 16528813]
  177. Curr Eye Res. 2005 Jul;30(7):505-15 [PMID: 16020284]
  178. Front Bioeng Biotechnol. 2021 Nov 30;9:674738 [PMID: 34917592]
  179. Toxicol Ind Health. 2020 Jul;36(7):514-530 [PMID: 32962563]
  180. Int J Biol Macromol. 2018 Sep;116:786-792 [PMID: 29777815]
  181. Int J Tryptophan Res. 2019 Feb 27;12:1178646919831677 [PMID: 30833815]
  182. Molecules. 2015 Sep 11;20(9):16540-65 [PMID: 26378513]
  183. Nanomaterials (Basel). 2020 Mar 20;10(3): [PMID: 32244858]
  184. Carbohydr Res. 2015 Jun 26;411:15-21 [PMID: 25950401]

Grants

  1. 1502/Consejo Nacional de Ciencia y Tecnología

Word Cloud

Created with Highcharts 10.0.0treatmentscombinatorialantibioticsbacterialnewtherapiesantimicrobialinfectionsusepathogensESKAPEresistanceThereforemultidrug-resistantbacteriaCombinatorialdevelopmentssignificantpolymersinorganicnanoparticlespeptidesSincediscoveryhumanityablecopebattleHoweverinappropriatelackinnovationtherapeuticagentsfactorsallowedemergencestrainsresistantmultipleantibioticcausingcrisishealthsectorFurthermoreWorldHealthOrganizationlistedseriesgroupacquiredvarieddifferentfamiliesscientificcommunityprioritizeddesigningdevelopingnovelcombatemergentOnesolutionsseekenhanceeffectsindividuallowerdosesbringingadvantagecasesmuchlessharmfulpatientsAmongnanomaterialsgainedinterestpromisingnanotherapeuticsincludeduebactericidalnanocarrierpropertiesreviewfocusesdiscussingstate-of-the-artadvancesconcludesperspectivefuturenanotherapeutictargetNanomaterials-BasedTherapyStrategyCombatAntibioticResistancetreatment

Similar Articles

Cited By