Current Opinion in LAIV: A Matter of Parent Virus Choice.

Irina Kiseleva
Author Information
  1. Irina Kiseleva: Institute of Experimental Medicine, 197376 St. Petersburg, Russia. ORCID

Abstract

Influenza is still a frequent seasonal infection of the upper respiratory tract, which may have deadly consequences, especially for the elderly. This is in spite of the availability of vaccines suggested for persons above 65 years of age. Two types of conventional influenza vaccines are currently licensed for use-live attenuated and inactivated vaccines. Depending on local regulatory requirements, live attenuated vaccines are produced by the reverse genetics technique or by classical reassortment in embryonated chicken eggs. Sometimes, the efficiency of classical reassortment is complicated by certain properties of the wild-type parent virus. Cases of low efficacy of vaccines have been noted, which, among other reasons, may be associated with suboptimal properties of the wild-type parent virus that are not considered when recommendations for influenza vaccine composition are made. Unfortunately, knowledge surrounding the roles of properties of the circulating influenza virus and its impact on the efficacy of the reassortment process, vaccination efficiency, the infectivity of the vaccine candidates, etc., is now scattered in different publications. This review summarizes the main features of the influenza virus that may dramatically affect different aspects of the preparation of egg-derived live attenuated vaccine candidates and their effectiveness. The author expresses her personal view, which may not coincide with the opinion of other experts in the field of influenza vaccines.

Keywords

References

  1. Nat Rev Microbiol. 2009 Apr;7(4):306-11 [PMID: 19270719]
  2. Vaccine. 2021 Oct 1;39(41):6081-6087 [PMID: 34521551]
  3. Vaccine. 2010 Feb 25;28(9):2149-56 [PMID: 20003926]
  4. Nature. 2008 Sep 4;455(7209):100-4 [PMID: 18690211]
  5. Virology. 1994 Feb 15;199(1):89-97 [PMID: 8116258]
  6. J Med Virol. 2000 May;61(1):94-9 [PMID: 10745239]
  7. Sci Sin B. 1982 Apr;25(4):411-9 [PMID: 7100902]
  8. Vaccine. 1985 Sep;3(3 Suppl):215-8 [PMID: 4060851]
  9. Drugs. 2011 Aug 20;71(12):1591-622 [PMID: 21861544]
  10. Vaccines (Basel). 2019 Nov 01;7(4): [PMID: 31683888]
  11. Vaccine. 2020 Dec 14;38(52):8379-8386 [PMID: 33229107]
  12. Front Microbiol. 2021 Jul 14;12:683152 [PMID: 34335507]
  13. Transbound Emerg Dis. 2021 Jan;68(1):62-75 [PMID: 32187882]
  14. Virology. 1986 Feb;149(1):27-35 [PMID: 3946080]
  15. Vopr Virusol. 1979 Jul-Aug;(4):430 [PMID: 483779]
  16. Vaccine. 2015 Feb 11;33(7):879-84 [PMID: 25545595]
  17. J Virol. 2010 Jan;84(2):894-7 [PMID: 19889775]
  18. Sci Am. 2004 Dec;291(6):100-5 [PMID: 15597986]
  19. Virology. 1983 Dec;131(2):394-408 [PMID: 6197808]
  20. Virology. 1989 Aug;171(2):634-6 [PMID: 2474896]
  21. Cell Host Microbe. 2019 Jun 12;25(6):773-775 [PMID: 31194938]
  22. Vaccine. 1985 Dec;3(5):355-69 [PMID: 3909681]
  23. J Virol. 2014 May;88(9):4828-38 [PMID: 24522930]
  24. Med Hypotheses. 2020 Apr 22;140:109752 [PMID: 32361099]
  25. J Virol Methods. 2016 Jan;227:33-9 [PMID: 26519883]
  26. Open Microbiol J. 2014 Jul 11;8:59-70 [PMID: 25132869]
  27. PLoS One. 2014 Apr 18;9(4):e94923 [PMID: 24747414]
  28. J Virol. 2010 Aug;84(16):8287-99 [PMID: 20519409]
  29. Hum Vaccin Immunother. 2018 Mar 4;14(3):571-578 [PMID: 28933664]
  30. Vaccine. 2011 Apr 27;29(19):3517-24 [PMID: 21406268]
  31. Arch Virol. 2020 Jun;165(6):1357-1366 [PMID: 32285202]
  32. J Hosp Infect. 2016 Oct;94(2):143-9 [PMID: 27515458]
  33. Virology. 1986 Dec;155(2):484-97 [PMID: 3788061]
  34. Philos Trans R Soc Lond B Biol Sci. 2009 Aug 12;364(1527):2263-74 [PMID: 19571246]
  35. J Gen Virol. 2010 Apr;91(Pt 4):931-7 [PMID: 20007357]
  36. Influenza Other Respir Viruses. 2008 Nov;2(6):203-9 [PMID: 19453396]
  37. PLoS One. 2014 Mar 19;9(3):e92580 [PMID: 24647786]
  38. Lancet Infect Dis. 2017 Dec;17(12):1234-1235 [PMID: 29173876]
  39. Annu Rev Biochem. 1987;56:365-94 [PMID: 3304138]
  40. Nat Rev Microbiol. 2009 Aug;7(8):615; author reply 615 [PMID: 19561625]
  41. Clin Microbiol Rev. 2013 Jul;26(3):476-92 [PMID: 23824369]
  42. Vaccine. 1995 Nov;13(16):1583-8 [PMID: 8578846]
  43. J Gen Virol. 1980 Jun;48(Pt 2):383-9 [PMID: 7400776]
  44. Hum Vaccin Immunother. 2018;14(8):1840-1847 [PMID: 29641358]
  45. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50 [PMID: 10430945]
  46. Res Microbiol. 2009 Sep;160(7):466-72 [PMID: 19647075]
  47. Virology. 2006 Jun 20;350(1):137-45 [PMID: 16545416]
  48. Influenza Other Respir Viruses. 2008 Nov;2(6):193-202 [PMID: 19453395]
  49. J Theor Biol. 2010 Feb 21;262(4):698-710 [PMID: 19833132]
  50. PLoS One. 2011;6(6):e20823 [PMID: 21695145]
  51. Virus Res. 1995 Dec;39(2-3):105-18 [PMID: 8837878]
  52. Viruses. 2019 Feb 22;11(2): [PMID: 30813325]
  53. Viruses. 2016 Aug 20;8(8): [PMID: 27556479]
  54. Science. 1985 Dec 20;230(4732):1350-4 [PMID: 2999980]
  55. Trends Microbiol. 2018 Feb;26(2):87-89 [PMID: 29268980]
  56. Curr Top Microbiol Immunol. 2015;386:181-204 [PMID: 25059893]
  57. Cell Host Microbe. 2019 Jun 12;25(6):836-844.e5 [PMID: 31151913]
  58. BMC Bioinformatics. 2011 Feb 15;12 Suppl 1:S31 [PMID: 21342562]
  59. Virology. 1990 Mar;175(1):59-68 [PMID: 2309452]
  60. Annu Rev Genet. 2009;43:49-66 [PMID: 19653859]
  61. JAMA Netw Open. 2020 Mar 2;3(3):e201323 [PMID: 32196103]
  62. J Clin Microbiol. 1981 Jan;13(1):233-5 [PMID: 7462417]
  63. Vaccine. 2002 May 15;20(16):2082-90 [PMID: 11972977]
  64. Vaccine. 2009 Oct 30;27(46):6460-3 [PMID: 19559113]
  65. PLoS One. 2012;7(10):e47179 [PMID: 23071751]
  66. Vaccine. 2005 Apr 22;23(22):2943-52 [PMID: 15780743]
  67. Virology. 1989 Nov;173(1):317-22 [PMID: 2815586]
  68. J Virol. 2017 May 12;91(11): [PMID: 28356532]
  69. PLoS One. 2011 Apr 07;6(4):e18577 [PMID: 21490925]
  70. Nat Rev Drug Discov. 2015 Mar;14(3):167-82 [PMID: 25722244]
  71. Cold Spring Harb Perspect Med. 2020 Jul 1;10(7): [PMID: 31871237]
  72. Vaccine. 2014 Sep 3;32(39):5118-24 [PMID: 24858566]
  73. J Biomed Sci. 2020 Apr 2;27(1):47 [PMID: 32241276]
  74. Vaccine. 2015 Sep 22;33(39):5110-7 [PMID: 26296497]
  75. Nat Rev Microbiol. 2009 Aug;7(8):615; author reply 615 [PMID: 19561626]
  76. Vaccines (Basel). 2022 Mar 03;10(3): [PMID: 35335027]
  77. Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12578-12583 [PMID: 29109276]
  78. Vaccine. 2006 Nov 17;24(47-48):6859-66 [PMID: 17050041]
  79. Nat Rev Microbiol. 2009 Aug;7(8):615; author reply 615 [PMID: 19561628]
  80. Rev Med Virol. 1999 Oct-Dec;9(4):237-44 [PMID: 10578119]
  81. Virology. 1999 Jun 5;258(2):232-9 [PMID: 10366560]
  82. Cell Rep. 2022 May 31;39(9):110897 [PMID: 35649381]
  83. J Infect Dis. 1980 Mar;141(3):362-5 [PMID: 7365284]
  84. J Gen Virol. 2019 Jul;100(7):1079-1092 [PMID: 31169484]
  85. Annu Rev Biochem. 2000;69:531-69 [PMID: 10966468]
  86. Virus Res. 2004 Jul;103(1-2):187-93 [PMID: 15163508]
  87. Expert Rev Vaccines. 2013 Sep;12(9):1085-94 [PMID: 24024871]
  88. J Infect Dis. 1971 Feb;123(2):145-57 [PMID: 5544140]
  89. Front Microbiol. 2018 Feb 06;9:123 [PMID: 29467737]
  90. Arch Virol. 2007;152(6):1139-45 [PMID: 17294090]
  91. Viruses. 2017 Sep 21;9(10): [PMID: 28934167]
  92. Hum Vaccin Immunother. 2020 Sep 1;16(9):2219-2221 [PMID: 32735161]
  93. Microorganisms. 2020 Apr 19;8(4): [PMID: 32325860]
  94. Nat Rev Microbiol. 2009 Aug;7(8):615; author reply 615 [PMID: 19561623]
  95. J Biomed Sci. 2020 Feb 14;27(1):33 [PMID: 32059697]
  96. Vopr Virusol. 2006 Sep-Oct;51(5):38-41 [PMID: 17087064]
  97. Nat Rev Microbiol. 2018 Jan;16(1):60 [PMID: 29109554]
  98. Lancet Infect Dis. 2018 Jan;18(1):e25-e32 [PMID: 28780285]
  99. MMWR Morb Mortal Wkly Rep. 2018 Oct 26;67(42):1169-1173 [PMID: 30359341]
  100. Vaccine X. 2019 Jun 19;2:100031 [PMID: 31384746]
  101. J Virol. 1982 Feb;41(2):353-9 [PMID: 7077746]
  102. J Virol. 1999 Nov;73(11):9679-82 [PMID: 10516084]
  103. Virology. 1997 Jun 9;232(2):345-50 [PMID: 9191848]
  104. PLoS Pathog. 2014 Jan;10(1):e1003831 [PMID: 24391498]
  105. BMC Proc. 2011 Nov 22;5 Suppl 8:P104 [PMID: 22373084]
  106. Rev Infect Dis. 1979 May-Jun;1(3):413-33 [PMID: 399362]
  107. Virus Evol. 2020 Feb 17;6(1):veaa010 [PMID: 32082616]

MeSH Term

Aged
Female
Humans
Influenza Vaccines
Influenza, Human
Vaccination
Vaccines, Attenuated
Vaccines, Inactivated

Chemicals

Influenza Vaccines
Vaccines, Attenuated
Vaccines, Inactivated

Word Cloud

Created with Highcharts 10.0.0influenzavaccinesvirusvaccinemayattenuatedreassortmentpropertiesliveclassicalwild-typeparentefficiencyefficacycandidatesdifferentInfluenzastillfrequentseasonalinfectionupperrespiratorytractdeadlyconsequencesespeciallyelderlyspiteavailabilitysuggestedpersons65yearsageTwotypesconventionalcurrentlylicenseduse-liveinactivatedDependinglocalregulatoryrequirementsproducedreversegeneticstechniqueembryonatedchickeneggsSometimescomplicatedcertainCaseslownotedamongreasonsassociatedsuboptimalconsideredrecommendationscompositionmadeUnfortunatelyknowledgesurroundingrolescirculatingimpactprocessvaccinationinfectivityetcnowscatteredpublicationsreviewsummarizesmainfeaturesdramaticallyaffectaspectspreparationegg-derivedeffectivenessauthorexpressespersonalviewcoincideopinionexpertsfieldCurrentOpinionLAIV:MatterParentVirusChoicereassortant

Similar Articles

Cited By (1)