CFD Analysis and Life Cycle Assessment of Continuous Synthesis of Magnetite Nanoparticles Using 2D and 3D Micromixers.

Sergio Leonardo Florez, Ana Lucia Campaña, M Juliana Noguera, Valentina Quezada, Olga P Fuentes, Juan C Cruz, Johann F Osma
Author Information
  1. Sergio Leonardo Florez: Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogota 111711, Colombia. ORCID
  2. Ana Lucia Campaña: Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogota 111711, Colombia. ORCID
  3. M Juliana Noguera: Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogota 111711, Colombia.
  4. Valentina Quezada: Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogota 111711, Colombia. ORCID
  5. Olga P Fuentes: Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogota 111711, Colombia.
  6. Juan C Cruz: Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogota 111711, Colombia. ORCID
  7. Johann F Osma: Department of Electrical and Electronic Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogota 111711, Colombia. ORCID

Abstract

Magnetite nanoparticles (MNPs) have attracted basic and applied research due to their immense potential to enable applications in fields as varied as drug delivery and bioremediation. Conventional synthesis schemes led to wide particle size distributions and inhomogeneous morphologies and crystalline structures. This has been attributed to the inability to control nucleation and growth processes under the conventional conditions of bulk batch processes. Here, we attempted to address these issues by scaling down the synthesis process aided by microfluidic devices, as they provide highly controlled and stable mixing patterns. Accordingly, we proposed three micromixers with different channel configurations, namely, serpentine, triangular, and a 3D arrangement with abrupt changes in fluid direction. The micromixers were first studied in silico, aided by Comsol Multiphysics to investigate the obtained mixing patterns, and consequently, their potential for controlled growth and the nucleation processes required to form MNPs of uniform size and crystalline structure. The devices were then manufactured using a low-cost approach based on polymethyl methacrylate (PMMA) and laser cutting. Testing the micromixers in the synthesis of MNPs revealed homogeneous morphologies and particle size distributions, and the typical crystalline structure reported previously. A life cycle assessment (LCA) analysis for the devices was conducted in comparison with conventional batch co-precipitation synthesis to investigate the potential impacts on water and energy consumption. The obtained results revealed that such consumptions are higher than those of the conventional process. However, they can be reduced by conducting the synthesis with reused micromixers, as new PMMA is not needed for their assembly prior to operation. We are certain that the proposed approach represents an advantageous alternative to co-precipitation synthesis schemes, in terms of continuous production and more homogeneous physicochemical parameters of interest such as size, morphologies, and crystalline structure. Future work should be directed towards improving the sustainability indicators of the micromixers' manufacturing process.

Keywords

References

  1. Int J Pharm. 2014 Mar 25;463(2):155-60 [PMID: 23988565]
  2. Langmuir. 2018 Dec 18;34(50):15600-15611 [PMID: 30475624]
  3. Lab Chip. 2017 Jan 17;17(2):209-226 [PMID: 27991629]
  4. Drug Deliv. 2020 Dec;27(1):864-875 [PMID: 32515999]
  5. Toxicol Rep. 2021 Feb 03;8:331-336 [PMID: 33659189]
  6. Sci Total Environ. 2012 May 15;425:271-82 [PMID: 22483746]
  7. PeerJ. 2019 Nov 25;7:e8113 [PMID: 31788362]
  8. Anal Chem. 2018 Aug 21;90(16):9975-9982 [PMID: 30044615]
  9. Micromachines (Basel). 2018 Mar 02;9(3): [PMID: 30424041]
  10. J Colloid Interface Sci. 2016 Apr 15;468:334-346 [PMID: 26859095]
  11. Nat Commun. 2021 May 17;12(1):2884 [PMID: 34001882]
  12. Int J Nanomedicine. 2017 Mar 27;12:2361-2372 [PMID: 28392693]
  13. Pharmaceutics. 2020 Jun 17;12(6): [PMID: 32560390]
  14. Nanomaterials (Basel). 2021 Jan 04;11(1): [PMID: 33406661]
  15. Nanomaterials (Basel). 2020 Jul 21;10(7): [PMID: 32708175]
  16. Lab Chip. 2004 Apr;4(2):109-13 [PMID: 15052349]
  17. Sensors (Basel). 2016 Nov 23;16(11): [PMID: 27886051]
  18. Lab Chip. 2019 Nov 7;19(21):3618-3627 [PMID: 31576868]
  19. Biosensors (Basel). 2019 Mar 15;9(1): [PMID: 30875946]
  20. J Colloid Interface Sci. 2004 Jun 1;274(1):107-17 [PMID: 15120284]
  21. Biomicrofluidics. 2016 Oct 05;10(5):054113 [PMID: 27733894]
  22. Appl Environ Microbiol. 2018 Aug 17;84(17): [PMID: 29959254]
  23. Quant Imaging Med Surg. 2018 Oct;8(9):957-970 [PMID: 30505724]
  24. Int J Nanomedicine. 2018 Mar 15;13(T-NANO 2014 Abstracts):43-46 [PMID: 30880956]
  25. Angew Chem Int Ed Engl. 2009;48(39):7180-3 [PMID: 19708045]
  26. Adv Drug Deliv Rev. 2019 Jan 1;138:68-104 [PMID: 30553951]
  27. Ultrasonics. 2018 Mar;84:234-243 [PMID: 29175517]
  28. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:267-270 [PMID: 28268328]
  29. Micromachines (Basel). 2021 Mar 18;12(3): [PMID: 33803689]
  30. Chem Soc Rev. 2010 Mar;39(3):1183-202 [PMID: 20179831]
  31. Biomicrofluidics. 2010 Aug 31;4(3): [PMID: 20877656]
  32. Adv Drug Deliv Rev. 2019 Jan 1;138:56-67 [PMID: 30414494]
  33. Nanomaterials (Basel). 2014 Jun 05;4(2):408-438 [PMID: 28344230]
  34. Lab Chip. 2016 Apr 7;16(7):1254-60 [PMID: 26940033]
  35. ACS Omega. 2020 Jul 08;5(28):17396-17404 [PMID: 32715224]
  36. Talanta. 2018 May 15;182:259-266 [PMID: 29501150]
  37. Biochem Biophys Res Commun. 2015 Dec 18;468(3):511-7 [PMID: 26518648]
  38. Soft Matter. 2020 Mar 28;16(12):3096-3105 [PMID: 32149313]
  39. Lab Chip. 2019 Jul 9;19(14):2296-2314 [PMID: 31168556]
  40. Nanomaterials (Basel). 2020 Nov 17;10(11): [PMID: 33213016]
  41. Water Res. 2020 Oct 1;184:116058 [PMID: 32771688]
  42. ACS Nano. 2008 May;2(5):847-56 [PMID: 19206481]

Word Cloud

Created with Highcharts 10.0.0synthesissizecrystallinemicromixersMNPspotentialmorphologiesprocessesconventionalprocessdevicesstructureMagnetitenanoparticlesschemesparticledistributionsnucleationgrowthbatchaidedmicrofluidiccontrolledmixingpatternsproposed3DinvestigateobtainedapproachPMMArevealedhomogeneouslifecycleassessmentco-precipitationattractedbasicappliedresearchdueimmenseenableapplicationsfieldsvarieddrugdeliverybioremediationConventionalledwideinhomogeneousstructuresattributedinabilitycontrolconditionsbulkattemptedaddressissuesscalingprovidehighlystableAccordinglythreedifferentchannelconfigurationsnamelyserpentinetriangulararrangementabruptchangesfluiddirectionfirststudiedsilicoComsolMultiphysicsconsequentlyrequiredformuniformmanufacturedusinglow-costbasedpolymethylmethacrylatelasercuttingTestingtypicalreportedpreviouslyLCAanalysisconductedcomparisonimpactswaterenergyconsumptionresultsconsumptionshigherHowevercanreducedconductingreusednewneededassemblyprioroperationcertainrepresentsadvantageousalternativetermscontinuousproductionphysicochemicalparametersinterestFutureworkdirectedtowardsimprovingsustainabilityindicatorsmicromixers'manufacturingCFDAnalysisLifeCycleAssessmentContinuousSynthesisNanoparticlesUsing2DMicromixersironoxidemagneticsystems

Similar Articles

Cited By