Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation.

Felipe J Valencia, Viviana Aurora, Max Ramírez, Carlos J Ruestes, Alejandro Prada, Alejandro Varas, José Rogan
Author Information
  1. Felipe J Valencia: Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile.
  2. Viviana Aurora: Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile.
  3. Max Ramírez: Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile.
  4. Carlos J Ruestes: Instituto Interdisciplinario de Ciencias Básicas, CONICET-UNCuyo, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina.
  5. Alejandro Prada: Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile.
  6. Alejandro Varas: Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile.
  7. José Rogan: Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile.

Abstract

In this contribution, we present a study of the mechanical properties of porous nanoshells measured with a nanoindentation technique. Porous nanoshells with hollow designs can present attractive mechanical properties, as observed in hollow nanoshells, but coupled with the unique mechanical behavior of porous materials. Porous nanoshells display mechanical properties that are dependent on shell porosity. Our results show that, under smaller porosity values, deformation is closely related to the one observed for polycrystalline and single-crystalline nanoshells involving dislocation activity. When porosity in the nanoparticle is increased, plastic deformation was mediated by grain boundary sliding instead of dislocation activity. Additionally, porosity suppresses dislocation activity and decreases nanoparticle strength, but allows for significant strain hardening under strains as high as 0.4. On the other hand, Young's modulus decreases with the increase in nanoshell porosity, in agreement with the established theories of porous materials. However, we found no quantitative agreement between conventional models applied to obtain the Young's modulus of porous materials.

Keywords

References

  1. Nanoscale. 2019 May 16;11(19):9563-9573 [PMID: 31049506]
  2. Adv Mater. 2011 May 10;23(18):2119-22 [PMID: 21462371]
  3. Small. 2007 Oct;3(10):1660-71 [PMID: 17890644]
  4. Nat Mater. 2008 Dec;7(12):947-52 [PMID: 18931673]
  5. Science. 2004 Apr 30;304(5671):711-4 [PMID: 15118156]
  6. J Chem Inf Model. 2020 Dec 28;60(12):6204-6210 [PMID: 33118806]
  7. Adv Mater. 2018 Sep;30(38):e1800939 [PMID: 30009431]
  8. Sci Rep. 2016 Apr 13;6:24187 [PMID: 27072412]
  9. Small. 2020 Dec;16(48):e2004925 [PMID: 33140582]
  10. J Colloid Interface Sci. 2015 May 15;446:59-66 [PMID: 25656560]
  11. Nanotechnology. 2021 Apr 2;32(14):145715 [PMID: 33352539]
  12. Nat Commun. 2018 Oct 5;9(1):4102 [PMID: 30291239]
  13. Phys Chem Chem Phys. 2014 Apr 14;16(14):6623-9 [PMID: 24569850]
  14. Nat Mater. 2005 Jul;4(7):525-9 [PMID: 15937490]
  15. Nanotechnology. 2010 Mar 5;21(9):095501 [PMID: 20110579]
  16. RSC Adv. 2021 Jan 13;11(5):3115-3124 [PMID: 35424239]
  17. Chem Commun (Camb). 2014 Feb 14;50(13):1519-22 [PMID: 24317277]
  18. Adv Mater. 2019 Sep;31(38):e1707612 [PMID: 30285290]
  19. Science. 2005 Sep 16;309(5742):1838-41 [PMID: 16166512]
  20. Phys Rev B Condens Matter. 1990 May 15;41(14):9717-9720 [PMID: 9993345]
  21. Beilstein J Nanotechnol. 2015 Jun 18;6:1348-61 [PMID: 26199838]
  22. Nano Lett. 2010 Sep 8;10(9):3764-9 [PMID: 20701250]
  23. Nano Lett. 2012 Jul 11;12(7):3351-5 [PMID: 21651306]

Word Cloud

Created with Highcharts 10.0.0porousnanoshellsporositymechanicalmaterialspropertiesPorousdislocationactivitypresentnanoindentationhollowobserveddeformationnanoparticledecreasesYoung'smodulusagreementcontributionstudymeasuredtechniquedesignscanattractivecoupleduniquebehaviordisplaydependentshellresultsshowsmallervaluescloselyrelatedonepolycrystallinesingle-crystallineinvolvingincreasedplasticmediatedgrainboundaryslidinginsteadAdditionallysuppressesstrengthallowssignificantstrainhardeningstrainshigh04handincreasenanoshellestablishedtheoriesHoweverfoundquantitativeconventionalmodelsappliedobtainProbingMechanicalPropertiesNanoshellsNanoindentationmoleculardynamicsplasticity

Similar Articles

Cited By

No available data.