A Novel Detection Refinement Technique for Accurate Identification of Burrows in Underwater Imagery.

Atif Naseer, Enrique Nava Baro, Sultan Daud Khan, Yolanda Vila
Author Information
  1. Atif Naseer: ETSI Telecomunicación, Universidad de Málaga, 29071 Malaga, Spain. ORCID
  2. Enrique Nava Baro: ETSI Telecomunicación, Universidad de Málaga, 29071 Malaga, Spain. ORCID
  3. Sultan Daud Khan: Department of Computer Science, National University of Technology, Islamabad 44000, Pakistan. ORCID
  4. Yolanda Vila: Centro Oceanográfico de Cádiz (IEO-CSIC), Instituto Español de Oceanografía, 11006 Cádiz, Spain.

Abstract

With the evolution of the convolutional neural network (CNN), object detection in the underwater environment has gained a lot of attention. However, due to the complex nature of the underwater environment, generic CNN-based object detectors still face challenges in underwater object detection. These challenges include image blurring, texture distortion, color shift, and scale variation, which result in low precision and recall rates. To tackle this challenge, we propose a detection refinement algorithm based on spatial-temporal analysis to improve the performance of generic detectors by suppressing the false positives and recovering the missed detections in underwater videos. In the proposed work, we use state-of-the-art deep neural networks such as Inception, ResNet50, and ResNet101 to automatically classify and detect the Norway lobster burrows from underwater videos. is one of the most important commercial species in Northeast Atlantic waters, and it lives in burrow systems that it builds itself on muddy bottoms. To evaluate the performance of proposed framework, we collected the data from the Gulf of Cadiz. From experiment results, we demonstrate that the proposed framework effectively suppresses false positives and recovers missed detections obtained from generic detectors. The mean average precision (mAP) gained a 10% increase with the proposed refinement technique.

Keywords

References

  1. IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149 [PMID: 27295650]
  2. IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1627-45 [PMID: 20634557]
  3. IEEE Trans Pattern Anal Mach Intell. 2016 Jan;38(1):142-58 [PMID: 26656583]
  4. Sci Data. 2021 Aug 2;8(1):196 [PMID: 34341357]
  5. IEEE Trans Pattern Anal Mach Intell. 2008 May;30(5):909-26 [PMID: 18369258]
  6. IEEE Trans Image Process. 2021;30:4719-4734 [PMID: 33905330]
  7. Opt Express. 2005 Oct 31;13(22):8766-71 [PMID: 19498910]
  8. IEEE Trans Pattern Anal Mach Intell. 2014 Aug;36(8):1532-45 [PMID: 26353336]

MeSH Term

Algorithms
Animals
Nephropidae
Neural Networks, Computer

Word Cloud

Created with Highcharts 10.0.0underwaterdetectionproposedobjectgenericdetectorsneuralenvironmentgainedchallengesprecisionrefinementanalysisperformancefalsepositivesmisseddetectionsvideosdeepframeworkevolutionconvolutionalnetworkCNNlotattentionHoweverduecomplexnatureCNN-basedstillfaceincludeimageblurringtexturedistortioncolorshiftscalevariationresultlowrecallratestacklechallengeproposealgorithmbasedspatial-temporalimprovesuppressingrecoveringworkusestate-of-the-artnetworksInceptionResNet50ResNet101automaticallyclassifydetectNorwaylobsterburrowsoneimportantcommercialspeciesNortheastAtlanticwaterslivesburrowsystemsbuildsmuddybottomsevaluatecollecteddataGulfCadizexperimentresultsdemonstrateeffectivelysuppressesrecoversobtainedmeanaveragemAP10%increasetechniqueNovelDetectionRefinementTechniqueAccurateIdentificationBurrowsUnderwaterImageryNephropsnorvegicuslearningrefinementsspatial–temporal

Similar Articles

Cited By (1)