SARS CoV-2 (Delta Variant) Infection Kinetics and Immunopathogenesis in Domestic Cats.

Miruthula Tamil Selvan, Sachithra Gunasekara, Ping Xiao, Kristen Griffin, Shannon R Cowan, Sai Narayanan, Akhilesh Ramachandran, Darren E Hagen, Jerry W Ritchey, Jennifer M Rudd, Craig A Miller
Author Information
  1. Miruthula Tamil Selvan: Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA. ORCID
  2. Sachithra Gunasekara: Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
  3. Ping Xiao: Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK 74075, USA. ORCID
  4. Kristen Griffin: Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
  5. Shannon R Cowan: Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
  6. Sai Narayanan: Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
  7. Akhilesh Ramachandran: Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
  8. Darren E Hagen: Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK 74075, USA. ORCID
  9. Jerry W Ritchey: Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
  10. Jennifer M Rudd: Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA. ORCID
  11. Craig A Miller: Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA. ORCID

Abstract

Continued emergence of SARS-CoV-2 variants highlights the critical need for adaptable and translational animal models for acute COVID-19. Limitations to current animal models for SARS CoV-2 (e.g., transgenic mice, non-human primates, ferrets) include subclinical to mild lower respiratory disease, divergence from clinical COVID-19 disease course, and/or the need for host genetic modifications to permit infection. We therefore established a feline model to study COVID-19 disease progression and utilized this model to evaluate infection kinetics and immunopathology of the rapidly circulating Delta variant (B.1.617.2) of SARS-CoV-2. In this study, specific-pathogen-free domestic cats ( = 24) were inoculated intranasally and/or intratracheally with SARS CoV-2 (B.1.617.2). Infected cats developed severe clinical respiratory disease and pulmonary lesions at 4- and 12-days post-infection (dpi), even at 1/10 the dose of previously studied wild-type SARS-CoV-2. Infectious virus was isolated from nasal secretions of delta-variant infected cats in high amounts at multiple timepoints, and viral antigen was co-localized in ACE2-expressing cells of the lungs (pneumocytes, vascular endothelium, peribronchial glandular epithelium) and strongly associated with severe pulmonary inflammation and vasculitis that were more pronounced than in wild-type SARS-CoV-2 infection. RNA sequencing of infected feline lung tissues identified upregulation of multiple gene pathways associated with cytokine receptor interactions, chemokine signaling, and viral protein-cytokine interactions during acute infection with SARS-CoV-2. Weighted correlation network analysis (WGCNA) of differentially expressed genes identified several distinct clusters of dysregulated hub genes that are significantly correlated with both clinical signs and lesions during acute infection. Collectively, the results of these studies help to delineate the role of domestic cats in disease transmission and response to variant emergence, establish a flexible translational model to develop strategies to prevent the spread of SARS-CoV-2, and identify potential targets for downstream therapeutic development.

Keywords

References

  1. Sci Immunol. 2022 May 20;7(71):eabo1303 [PMID: 35324269]
  2. Ann Med Surg (Lond). 2021 Sep;69:102814 [PMID: 34512963]
  3. Viruses. 2019 Aug 30;11(9): [PMID: 31480322]
  4. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  5. Emerg Microbes Infect. 2021 Dec;10(1):638-650 [PMID: 33704016]
  6. Front Immunol. 2018 Apr 09;9:678 [PMID: 29686673]
  7. J Med Virol. 2022 Jul;94(7):2969-2976 [PMID: 35246846]
  8. Vet Med Sci. 2022 May;8(3):945-946 [PMID: 34958181]
  9. Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26382-26388 [PMID: 32994343]
  10. Open Heart. 2020 Dec;7(2): [PMID: 33443121]
  11. Lancet. 2021 Jun 26;397(10293):2461-2462 [PMID: 34139198]
  12. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33839760]
  13. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  14. J Biol Chem. 1995 Sep 8;270(36):21181-7 [PMID: 7545666]
  15. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  16. Nucleic Acids Res. 2012 Jan;40(Database issue):D593-8 [PMID: 22006842]
  17. EClinicalMedicine. 2021 Oct;40:101129 [PMID: 34541481]
  18. Sci Rep. 2021 Jun 1;11(1):11462 [PMID: 34075090]
  19. Lancet Respir Med. 2020 Apr;8(4):420-422 [PMID: 32085846]
  20. Emerg Infect Dis. 2021 Oct;27(10):2723-2725 [PMID: 34545805]
  21. PLoS Genet. 2020 Oct 22;16(10):e1008926 [PMID: 33090996]
  22. CMAJ. 2021 Oct 25;193(42):E1619-E1625 [PMID: 34610919]
  23. Lancet Infect Dis. 2022 Feb;22(2):183-195 [PMID: 34756186]
  24. J Infect Dis. 2021 Apr 23;223(8):1313-1321 [PMID: 33605423]
  25. Mod Pathol. 2020 Nov;33(11):2128-2138 [PMID: 32572155]
  26. PeerJ. 2021 Jan 4;9:e10666 [PMID: 33505806]
  27. Viruses. 2021 Jan 26;13(2): [PMID: 33530620]
  28. N Engl J Med. 2020 Aug 6;383(6):592-594 [PMID: 32402157]
  29. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  30. Front Biosci (Landmark Ed). 2022 Feb 14;27(2):65 [PMID: 35227008]
  31. Nat Commun. 2022 Jan 24;13(1):460 [PMID: 35075154]
  32. PLoS Pathog. 2022 Jan 13;18(1):e1010161 [PMID: 35025969]
  33. PLoS One. 2017 Sep 21;12(9):e0185138 [PMID: 28934316]
  34. Nature. 2020 Jul;583(7818):834-838 [PMID: 32408338]
  35. Vet Immunol Immunopathol. 2001 May 10;79(1-2):83-100 [PMID: 11356252]
  36. Emerg Microbes Infect. 2020 Dec;9(1):1259-1268 [PMID: 32438868]
  37. Transbound Emerg Dis. 2021 Aug 17;: [PMID: 34404118]
  38. China CDC Wkly. 2021 Jul 2;3(27):584-586 [PMID: 34594941]
  39. Nature. 2021 Dec;600(7889):367-368 [PMID: 34880488]
  40. Front Cardiovasc Med. 2021 Nov 11;8:779073 [PMID: 34859078]
  41. Nat Commun. 2021 Jan 4;12(1):81 [PMID: 33398055]
  42. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  43. Bioinformatics. 2012 Jul 1;28(13):1805-6 [PMID: 22543366]
  44. Biochem Biophys Res Commun. 2020 Oct 29;532(1):134-138 [PMID: 32829876]
  45. Cell. 2020 Jul 9;182(1):50-58.e8 [PMID: 32516571]
  46. Biomed Pharmacother. 2022 Jan;145:112420 [PMID: 34801852]
  47. Viruses. 2022 Feb 17;14(2): [PMID: 35216014]
  48. Vet Rec. 2021 Apr;188(8):e247 [PMID: 33890314]
  49. Proc Natl Acad Sci U S A. 2021 Dec 28;118(52): [PMID: 34903581]
  50. Nature. 2022 Feb;602(7896):300-306 [PMID: 34823256]
  51. Emerg Microbes Infect. 2022 Dec;11(1):95-112 [PMID: 34842046]
  52. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  53. Ann Intern Med. 2020 May 05;172(9):577-582 [PMID: 32150748]
  54. Viruses. 2021 Aug 05;13(8): [PMID: 34452415]
  55. Curr Opin Virol. 2021 Jun;48:73-81 [PMID: 33906125]
  56. Eur J Clin Invest. 2020 Jul;50(7):e13259 [PMID: 32353898]
  57. Nat Methods. 2015 Aug;12(8):733-5 [PMID: 26076426]
  58. Vet Immunol Immunopathol. 2011 Oct 15;143(3-4):282-91 [PMID: 21715019]
  59. Eur J Immunol. 2020 Sep;50(9):1283-1294 [PMID: 32910469]
  60. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  61. Lancet. 2021 Sep 4;398(10303):837-838 [PMID: 34388398]
  62. Nature. 2021 Nov;599(7883):114-119 [PMID: 34488225]
  63. Mod Pathol. 2020 Jun;33(6):1007-1014 [PMID: 32291399]
  64. Natl Sci Rev. 2020 Dec 08;8(3):nwaa291 [PMID: 34676095]
  65. Front Vet Sci. 2022 Apr 01;9:841430 [PMID: 35433922]
  66. J Clin Invest. 2021 Jun 15;131(12): [PMID: 33945513]
  67. Front Immunol. 2020 Dec 03;11:611004 [PMID: 33343585]
  68. J Microbiol. 2022 Mar;60(3):255-267 [PMID: 35235177]
  69. Signal Transduct Target Ther. 2020 Oct 19;5(1):157 [PMID: 32814760]
  70. EBioMedicine. 2021 Oct;72:103629 [PMID: 34655949]

Grants

  1. P20 GM103648/NIGMS NIH HHS
  2. P20GM103648/NIGMS NIH HHS

MeSH Term

Animals
COVID-19
Cats
Ferrets
Kinetics
Mice
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2diseaseinfectioncatsacuteCOVID-19SARSCoV-2clinicalfelinemodelDeltavariantB16172domesticemergenceneedtranslationalanimalmodelsrespiratoryand/orstudyseverepulmonarylesionswild-typeinfectedmultipleviralassociatedidentifiedpathwaysinteractionsgenestransmissionContinuedvariantshighlightscriticaladaptableLimitationscurrentegtransgenicmicenon-humanprimatesferretsincludesubclinicalmildlowerdivergencecoursehostgeneticmodificationspermitthereforeestablishedprogressionutilizedevaluatekineticsimmunopathologyrapidlycirculatingspecific-pathogen-free=24inoculatedintranasallyintratracheallyInfecteddeveloped4-12-dayspost-infectiondpieven1/10dosepreviouslystudiedInfectiousvirusisolatednasalsecretionsdelta-varianthighamountstimepointsantigenco-localizedACE2-expressingcellslungspneumocytesvascularendotheliumperibronchialglandularepitheliumstronglyinflammationvasculitispronouncedRNAsequencinglungtissuesupregulationgenecytokinereceptorchemokinesignalingprotein-cytokineWeightedcorrelationnetworkanalysisWGCNAdifferentiallyexpressedseveraldistinctclustersdysregulatedhubsignificantlycorrelatedsignsCollectivelyresultsstudieshelpdelineateroleresponseestablishflexibledevelopstrategiespreventspreadidentifypotentialtargetsdownstreamtherapeuticdevelopmentVariantInfectionKineticsImmunopathogenesisDomesticCatsinflammatorypathology

Similar Articles

Cited By