RNA-Seq and 16S rRNA Analysis Revealed the Effect of Deltamethrin on Channel Catfish in the Early Stage of Acute Exposure.

Yibin Yang, Xia Zhu, Ying Huang, Hongyu Zhang, Yongtao Liu, Ning Xu, Guihong Fu, Xiaohui Ai
Author Information
  1. Yibin Yang: Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
  2. Xia Zhu: Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
  3. Ying Huang: Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China.
  4. Hongyu Zhang: Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China.
  5. Yongtao Liu: Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
  6. Ning Xu: Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
  7. Guihong Fu: College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
  8. Xiaohui Ai: Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.

Abstract

Deltamethrin (Del) is a widely used pyrethroid insecticide and a dangerous material that has brought serious problems to the healthy breeding of aquatic animals. However, the toxicological mechanisms of Del on channel catfish remain unclear. In the present study, we exposed channel catfish to 0, 0.5, and 5 μg/L Del for 6 h, and analyzed the changes in histopathology, trunk kidney transcriptome, and intestinal microbiota composition. The pathological analyses showed that a high concentration of Del damaged the intestine and trunk kidney of channel catfish in the early stage. The transcriptome analysis detected 32 and 1837 differentially expressed genes (DEGs) in channel catfish trunk kidneys after exposure to 0.5 and 5 μg/L Del, respectively. Moreover, the KEGG pathway and GO enrichment analyses showed that the apoptosis signaling pathway was significantly enriched, and apoptosis-related DEGs, including cathepsin L, p53, Bax, and caspase-3, were also detected. These results suggested that apoptosis occurs in the trunk kidney of channel catfish in the early stage of acute exposure to Del. We also detected some DEGs and signaling pathways related to immunity and drug metabolism, indicating that early exposure to Del can lead to immunotoxicity and metabolic disorder of channel catfish, which increases the risk of pathogenic infections and energy metabolism disorders. Additionally, 16S rRNA gene sequencing showed that the composition of the intestinal microbiome significantly changed in channel catfish treated with Del. At the phylum level, the abundance of Firmicutes, Fusobacteria, and Actinobacteria significantly decreased in the early stage of Del exposure. At the genus level, the abundance of , and decreased after Del exposure. Overall, early exposure to Del can lead to tissue damage, metabolic disorder, immunotoxicity, and apoptosis in channel catfish, and affect the composition of its intestinal microbiota. Herein, we clarified the toxic effects of Del on channel catfish in the early stage of exposure and explored why fish under Del stress are more vulnerable to microbial infections and slow growth.

Keywords

References

  1. Mucosal Immunol. 2010 Jul;3(4):355-60 [PMID: 20237466]
  2. Nat Rev Immunol. 2013 Nov;13(11):815-29 [PMID: 24319779]
  3. Lett Appl Microbiol. 2008 Jan;46(1):43-8 [PMID: 17944860]
  4. Sci Total Environ. 2019 Feb 25;653:1426-1434 [PMID: 30759581]
  5. Environ Toxicol Pharmacol. 2019 May;68:101-108 [PMID: 30884452]
  6. Fish Shellfish Immunol. 2021 Jul;114:119-131 [PMID: 33930548]
  7. Bioinformatics. 2015 Sep 1;31(17):2882-4 [PMID: 25957349]
  8. Cell. 2019 Jan 10;176(1-2):11-42 [PMID: 30633901]
  9. J Hazard Mater. 2020 Apr 15;388:121791 [PMID: 31818666]
  10. Metabolites. 2021 May 06;11(5): [PMID: 34066348]
  11. Ecotoxicol Environ Saf. 2015 Jan;111:146-52 [PMID: 25450927]
  12. Chemosphere. 2019 Mar;219:155-164 [PMID: 30537588]
  13. Sci Rep. 2018 Jan 8;8(1):113 [PMID: 29311620]
  14. Cardiovasc Toxicol. 2021 Jan;21(1):29-41 [PMID: 32651933]
  15. Fish Shellfish Immunol. 2019 Nov;94:308-317 [PMID: 31470140]
  16. Semin Immunol. 2018 Aug;38:63-71 [PMID: 30337241]
  17. Fish Shellfish Immunol. 2021 Jun;113:9-19 [PMID: 33727078]
  18. Br J Nutr. 2016 May;115(9):1509-20 [PMID: 26983845]
  19. Ageing Res Rev. 2020 Dec;64:101191 [PMID: 33022416]
  20. Bull Environ Contam Toxicol. 2006 Apr;76(4):614-21 [PMID: 16688543]
  21. Animals (Basel). 2021 Jun 30;11(7): [PMID: 34209070]
  22. Chemosphere. 2019 Dec;236:124423 [PMID: 31545209]
  23. Toxicol Rep. 2017 Dec 11;5:85-89 [PMID: 29379743]
  24. Aquat Toxicol. 2000 Sep 1;50(3):231-243 [PMID: 10958957]
  25. Environ Toxicol. 2020 Aug 5;: [PMID: 32757256]
  26. Anim Genet. 2005 Dec;36(6):502-6 [PMID: 16293124]
  27. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  28. Front Immunol. 2021 Dec 15;12:775708 [PMID: 34975864]
  29. Ecotoxicol Environ Saf. 2021 May;214:112067 [PMID: 33640724]
  30. Cell Host Microbe. 2012 Sep 13;12(3):277-88 [PMID: 22980325]
  31. Toxicol Appl Pharmacol. 1982 Nov;66(2):153-61 [PMID: 7164094]
  32. Environ Pollut. 2020 Oct;265(Pt B):114496 [PMID: 32806437]
  33. Front Microbiol. 2018 May 23;9:1073 [PMID: 29875764]
  34. Chemosphere. 2021 Jan;263:128130 [PMID: 33297118]
  35. Sci Total Environ. 2018 Jun 1;626:737-743 [PMID: 29358144]
  36. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  37. Fish Shellfish Immunol. 2014 Jan;36(1):120-9 [PMID: 24176818]
  38. J Fish Dis. 2007 Oct;30(10):581-5 [PMID: 17850574]
  39. AMB Express. 2018 Dec 13;8(1):192 [PMID: 30547243]
  40. Environ Toxicol Pharmacol. 2019 Feb;66:1-6 [PMID: 30584970]
  41. Int J Mol Sci. 2016 Apr 14;17(4):557 [PMID: 27089334]
  42. Fish Physiol Biochem. 2021 Dec;47(6):2041-2053 [PMID: 34750711]
  43. Toxicol Appl Pharmacol. 2003 Feb 15;187(1):50-7 [PMID: 12628584]
  44. Environ Toxicol Pharmacol. 2012 Jul;34(1):1-13 [PMID: 22418068]
  45. Environ Pollut. 2019 Jul;250:990-997 [PMID: 31085486]
  46. Fish Shellfish Immunol. 2019 Jun;89:179-186 [PMID: 30928666]
  47. Cent Eur J Immunol. 2018;43(3):335-340 [PMID: 30588178]
  48. Fish Shellfish Immunol. 2015 Oct;46(2):537-42 [PMID: 26220643]
  49. Arch Environ Contam Toxicol. 2000 Oct;39(3):324-8 [PMID: 10948282]
  50. Mar Biotechnol (NY). 2010 Aug;12(4):361-79 [PMID: 20352271]
  51. Adv Exp Med Biol. 2020;1239:61-84 [PMID: 32451856]
  52. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  53. Genomics. 2017 Oct;109(5-6):463-470 [PMID: 28733102]
  54. Chemosphere. 2019 Mar;219:526-537 [PMID: 30553213]
  55. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22322-22330 [PMID: 31611372]
  56. Environ Monit Assess. 2011 Apr;175(1-4):573-87 [PMID: 20563640]
  57. Aquat Toxicol. 2017 Jun;187:90-99 [PMID: 28399480]
  58. Food Chem Toxicol. 2005 Feb;43(2):299-306 [PMID: 15696646]
  59. Exp Cell Res. 2020 Jan 1;386(1):111716 [PMID: 31734152]
  60. Chemosphere. 2006 Mar;62(8):1324-32 [PMID: 16154616]
  61. Arch Environ Contam Toxicol. 2008 Nov;55(4):610-8 [PMID: 18347841]
  62. Annu Rev Immunol. 2014;32:609-34 [PMID: 24655299]
  63. Fish Shellfish Immunol. 2012 Oct;33(4):1033-41 [PMID: 22796486]
  64. Sci Total Environ. 2020 May 1;715:136943 [PMID: 32007896]
  65. Environ Toxicol Pharmacol. 2006 Sep;22(2):200-4 [PMID: 21783710]
  66. Environ Toxicol Pharmacol. 2007 May;23(3):297-301 [PMID: 21783771]
  67. Adv Exp Med Biol. 2018;1032:15-35 [PMID: 30362088]
  68. Chemosphere. 2012 Jan;86(1):83-91 [PMID: 22075054]
  69. Autophagy. 2009 May;5(4):451-60 [PMID: 19164894]
  70. Inflammation. 2019 Dec;42(6):2215-2225 [PMID: 31473900]
  71. Annu Rev Pharmacol Toxicol. 1983;23:413-38 [PMID: 6347050]
  72. Bioinformatics. 2005 Oct 1;21(19):3787-93 [PMID: 15817693]
  73. Chemosphere. 2018 May;199:16-25 [PMID: 29427810]
  74. Toxicol Appl Pharmacol. 1986 Jul;84(3):512-22 [PMID: 3487848]
  75. J Fish Dis. 2010 Jun 1;33(6):497-505 [PMID: 20384909]
  76. Forensic Sci Int. 2017 Dec;281:176-182 [PMID: 29190591]
  77. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  78. J Anim Ecol. 2018 Mar;87(2):489-499 [PMID: 29030867]
  79. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  80. Environ Toxicol Chem. 2009 Mar;28(3):578-85 [PMID: 18937538]
  81. Wiley Interdiscip Rev RNA. 2017 Jan;8(1): [PMID: 27198714]
  82. Nat Biotechnol. 2013 Sep;31(9):814-21 [PMID: 23975157]
  83. Nat Commun. 2017 Jul 20;8(1):86 [PMID: 28729558]
  84. Nat Rev Genet. 2014 Feb;15(2):121-32 [PMID: 24434847]
  85. Environ Toxicol Pharmacol. 2015 Nov;40(3):915-23 [PMID: 26509732]
  86. Rev Environ Contam Toxicol. 1989;108:133-77 [PMID: 2646661]
  87. Environ Res. 2019 Mar;170:260-281 [PMID: 30599291]
  88. Aquat Toxicol. 2021 Jan;230:105705 [PMID: 33310672]
  89. J Fish Dis. 2010 Oct;33(10):789-801 [PMID: 20678104]
  90. Dev Comp Immunol. 2014 May;44(1):226-34 [PMID: 24378224]
  91. Autoimmun Rev. 2020 Sep;19(9):102617 [PMID: 32663626]
  92. Matrix Biol. 2005 Apr;24(2):83-95 [PMID: 15890260]
  93. Ecotoxicol Environ Saf. 2021 Feb;209:111821 [PMID: 33360593]
  94. Ecotoxicol Environ Saf. 2021 Dec 1;225:112716 [PMID: 34478975]
  95. Environ Toxicol. 2014 Nov;29(11):1227-35 [PMID: 23436297]
  96. Environ Sci Technol. 2015 May 19;49(10):6231-9 [PMID: 25884391]
  97. Gene. 2011 Sep 15;484(1-2):13-7 [PMID: 21658436]
  98. J Biol Chem. 2008 Jul 4;283(27):19140-50 [PMID: 18469004]
  99. Cell Tissue Res. 2017 Jun;368(3):425-439 [PMID: 28035476]
  100. Semin Immunol. 2007 Feb;19(1):24-32 [PMID: 17275323]
  101. Neurosci Lett. 2000 Jan 28;279(2):85-8 [PMID: 10674627]
  102. Ecotoxicol Environ Saf. 2022 Mar 15;234:113421 [PMID: 35304335]

MeSH Term

Animals
Ictaluridae
Nitriles
Pyrethrins
RNA, Ribosomal, 16S
RNA-Seq

Chemicals

Nitriles
Pyrethrins
RNA, Ribosomal, 16S
decamethrin

Word Cloud

Created with Highcharts 10.0.0Delchannelcatfishexposureearly5trunkstageapoptosis0kidneyintestinalcompositionshoweddetectedDEGssignificantlyimmunotoxicitymetabolicdisorderDeltamethrinμg/Ltranscriptomemicrobiotaanalysespathwaysignalingalsometabolismcanleadinfections16SrRNAlevelabundancedecreasedwidelyusedpyrethroidinsecticidedangerousmaterialbroughtseriousproblemshealthybreedingaquaticanimalsHowevertoxicologicalmechanismsremainunclearpresentstudyexposed6hanalyzedchangeshistopathologypathologicalhighconcentrationdamagedintestineanalysis321837differentiallyexpressedgeneskidneysrespectivelyMoreoverKEGGGOenrichmentenrichedapoptosis-relatedincludingcathepsinLp53Baxcaspase-3resultssuggestedoccursacutepathwaysrelatedimmunitydrugindicatingincreasesriskpathogenicenergydisordersAdditionallygenesequencingmicrobiomechangedtreatedphylumFirmicutesFusobacteriaActinobacteriagenusOveralltissuedamageaffectHereinclarifiedtoxiceffectsexploredfishstressvulnerablemicrobialslowgrowthRNA-SeqAnalysisRevealedEffectChannelCatfishEarlyStageAcuteExposuredeltamethrin

Similar Articles

Cited By