Joint modelling of longitudinal response and time-to-event data using conditional distributions: a Bayesian perspective.

Srimanti Dutta, Geert Molenberghs, Arindom Chakraborty
Author Information
  1. Srimanti Dutta: Department of Statistics, Visva-Bharati University, Santiniketan, India. ORCID
  2. Geert Molenberghs: Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Universiteit Hasselt, Hasselt, Belgium. ORCID
  3. Arindom Chakraborty: Department of Statistics, Visva-Bharati University, Santiniketan, India. ORCID

Abstract

Over the last 20 or more years a lot of clinical applications and methodological development in the area of joint models of longitudinal and time-to-event outcomes have come up. In these studies, patients are followed until an event, such as death, occurs. In most of the work, using subject-specific random-effects as frailty, the dependency of these two processes has been established. In this article, we propose a new joint model that consists of a linear mixed-effects model for longitudinal data and an accelerated failure time model for the time-to-event data. These two sub-models are linked via a latent random process. This model will capture the dependency of the time-to-event on the longitudinal measurements more directly. Using standard priors, a Bayesian method has been developed for estimation. All computations are implemented using OpenBUGS. Our proposed method is evaluated by a simulation study, which compares the conditional model with a joint model with local independence by way of calibration. Data on Duchenne muscular dystrophy (DMD) syndrome and a set of data in AIDS patients have been analysed.

Keywords

References

  1. Biostatistics. 2016 Jan;17(1):149-64 [PMID: 26319700]
  2. Stat Med. 1996 Aug 15;15(15):1663-85 [PMID: 8858789]
  3. Stat Med. 2011 May 30;30(12):1366-80 [PMID: 21337596]
  4. Biometrics. 2001 Dec;57(4):1173-84 [PMID: 11764258]
  5. Biometrics. 1994 Dec;50(4):1003-14 [PMID: 7786983]
  6. Comput Math Methods Med. 2010 Sep;11(3):281-95 [PMID: 20721765]
  7. Biometrics. 2010 Mar;66(1):20-9 [PMID: 19459832]
  8. J R Stat Soc Ser A Stat Soc. 2018 Jun;181(3):869-888 [PMID: 31123390]
  9. Stat Methods Med Res. 2016 Feb;25(1):336-51 [PMID: 22767866]
  10. Stat Methods Med Res. 2018 Jan;27(1):298-311 [PMID: 26988933]
  11. Stat Med. 2019 Dec 30;38(30):5565-5586 [PMID: 31691322]
  12. Stat Med. 2014 Feb 20;33(4):580-94 [PMID: 24009073]
  13. N Engl J Med. 1994 Mar 10;330(10):657-62 [PMID: 7906384]
  14. J Stat Softw. 2017;76: [PMID: 36568334]
  15. Biometrics. 2002 Mar;58(1):225-31 [PMID: 11890319]
  16. Stat Methods Med Res. 2007 Oct;16(5):387-97 [PMID: 17656450]
  17. Comput Stat Data Anal. 2019 Jan;129:14-29 [PMID: 30559575]
  18. J Biopharm Stat. 2014;24(4):834-55 [PMID: 24697192]
  19. Biometrics. 2000 Dec;56(4):1047-54 [PMID: 11129460]
  20. Biometrics. 2003 Jun;59(2):221-8 [PMID: 12926706]
  21. Biom J. 2017 Nov;59(6):1184-1203 [PMID: 28799274]
  22. Stat Methods Med Res. 2018 Apr;27(4):1258-1270 [PMID: 27460540]
  23. Biostatistics. 2000 Dec;1(4):465-80 [PMID: 12933568]
  24. Biometrics. 1997 Mar;53(1):330-9 [PMID: 9147598]
  25. Stat Methods Med Res. 2019 Feb;28(2):327-342 [PMID: 28750578]
  26. Biometrics. 2012 Sep;68(3):954-64 [PMID: 22385010]
  27. J Acquir Immune Defic Syndr Hum Retrovirol. 1996 Feb 1;11(2):161-9 [PMID: 8556398]
  28. Biometrics. 2018 Jun;74(2):685-693 [PMID: 29092100]
  29. Biom J. 2017 Nov;59(6):1261-1276 [PMID: 28792080]
  30. Biometrics. 2011 Sep;67(3):819-29 [PMID: 21306352]
  31. Stat Methods Med Res. 2016 Dec;25(6):2714-2732 [PMID: 24770852]
  32. Stat Med. 2009 May 15;28(11):1601-19 [PMID: 19308919]

Word Cloud

Created with Highcharts 10.0.0modellongitudinaltime-to-eventdatajointusingBayesianconditionalpatientsdependencytwomethodmusculardystrophylast20yearslotclinicalapplicationsmethodologicaldevelopmentareamodelsoutcomescomestudiesfollowedeventdeathoccursworksubject-specificrandom-effectsfrailtyprocessesestablishedarticleproposenewconsistslinearmixed-effectsacceleratedfailuretimesub-modelslinkedvialatentrandomprocesswillcapturemeasurementsdirectlyUsingstandardpriorsdevelopedestimationcomputationsimplementedOpenBUGSproposedevaluatedsimulationstudycompareslocalindependencewaycalibrationDataDuchenneDMDsyndromesetAIDSanalysedJointmodellingresponsedistributions:perspective62F1562N01AFTBartlettdecompositiondistribution

Similar Articles

Cited By