Characterization of Integrin Molecular Tension of Human Breast Cancer Cells on Anisotropic Nanopatterns.

Kyung Ah Kim, Srivithya Vellampatti, Byoung Choul Kim
Author Information
  1. Kyung Ah Kim: Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea.
  2. Srivithya Vellampatti: Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea.
  3. Byoung Choul Kim: Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea.

Abstract

Physical interactions between cells and micro/nanometer-sized architecture presented in an extracellular matrix (ECM) environment significantly influence cell adhesion and morphology, often facilitating the incidence of diseases, such as cancer invasion and metastasis. Sensing and responding to the topographical cues are deeply associated with a physical interplay between integrins, ligands, and mechanical force transmission, ultimately determining diverse cell behavior. Thus, how the tension applied to the integrin-ligand bonds controls cells' response to the topographical cues needs to be elucidated through quantitative analysis. Here, in this brief research report, we reported a novel platform, termed "topo-tension gauge tether (TGT)," to visualize single-molecule force applied to the integrin-ligand on the aligned anisotropic nanopatterns. Using the topo-TGT assay, first, topography-induced adhesion and morphology of cancerous and normal cells were compared with the pre-defined peak integrin tension. Next, spatial integrin tensions underneath cells were identified using reconstructed integrin tension maps. As a result, we characterized each cell's capability to comply with nanotopographies and the magnitude of the spatial integrin tension. Altogether, the quantitative information on integrin tension will be a valuable basis for understanding the biophysical mechanisms underlying the force balance influencing adhesion to the topographical cues.

Keywords

References

  1. J Cell Biol. 2021 Jul 5;220(7): [PMID: 33904858]
  2. Biomaterials. 2013 Apr;34(12):2865-74 [PMID: 23357372]
  3. J Cell Sci. 2021 Apr 15;134(8): [PMID: 33722978]
  4. Ann Biomed Eng. 1994 Jul-Aug;22(4):342-56 [PMID: 7998680]
  5. Adv Healthc Mater. 2017 Aug;6(16): [PMID: 28509381]
  6. BMC Med. 2006 Dec 26;4(1):38 [PMID: 17190588]
  7. Nano Lett. 2009 Mar;9(3):1111-6 [PMID: 19206508]
  8. Annu Rev Cell Dev Biol. 2010;26:315-33 [PMID: 19575647]
  9. Nat Cell Biol. 2019 Jan;21(1):25-31 [PMID: 30602766]
  10. Curr Opin Cell Biol. 2007 Oct;19(5):495-507 [PMID: 17928215]
  11. Acta Biochim Pol. 2006;53(1):93-100 [PMID: 16410837]
  12. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):565-70 [PMID: 20018748]
  13. Biomedicines. 2021 Nov 21;9(11): [PMID: 34829965]
  14. ACS Nano. 2021 Jul 1;: [PMID: 34197709]
  15. Cancer Res. 2002 Nov 1;62(21):6278-88 [PMID: 12414658]
  16. Wiley Interdiscip Rev Syst Biol Med. 2013 Sep-Oct;5(5):587-602 [PMID: 23857825]
  17. Mol Biol Cell. 2005 Sep;16(9):4329-40 [PMID: 16000373]
  18. iScience. 2018 Nov 30;9:502-512 [PMID: 30472533]
  19. J Cell Biol. 2000 Oct 16;151(2):249-62 [PMID: 11038173]
  20. Cell Rep. 2018 Oct 9;25(2):328-338.e5 [PMID: 30304674]
  21. Development. 2014 May;141(10):1999-2013 [PMID: 24803649]
  22. BMC Med. 2008 Apr 28;6:11 [PMID: 18442412]
  23. Science. 2013 May 24;340(6135):991-4 [PMID: 23704575]
  24. Nature. 2010 Nov 25;468(7323):580-4 [PMID: 21107430]
  25. Cell. 1992 Apr 3;69(1):11-25 [PMID: 1555235]
  26. Nat Commun. 2017 Apr 12;8:14923 [PMID: 28401884]
  27. Cell. 2012 Dec 21;151(7):1513-27 [PMID: 23260139]
  28. J Cell Biol. 2012 Apr 30;197(3):351-60 [PMID: 22547406]
  29. Biochem Soc Symp. 1999;65:27-42 [PMID: 10320931]
  30. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011920 [PMID: 18763995]
  31. Sci Rep. 2018 Feb 8;8(1):2668 [PMID: 29422510]
  32. Biophys J. 2015 Dec 1;109(11):2259-67 [PMID: 26636937]
  33. ACS Biomater Sci Eng. 2019 Aug 12;5(8):3856-3863 [PMID: 33438425]
  34. Nature. 1998 Apr 16;392(6677):730-3 [PMID: 9565036]

Word Cloud

Created with Highcharts 10.0.0tensionintegrinforcecellsadhesiontopographicalcuescellmorphologycancerappliedintegrin-ligandquantitativegaugetetheranisotropicspatialPhysicalinteractionsmicro/nanometer-sizedarchitecturepresentedextracellularmatrixECMenvironmentsignificantlyinfluenceoftenfacilitatingincidencediseasesinvasionmetastasisSensingrespondingdeeplyassociatedphysicalinterplayintegrinsligandsmechanicaltransmissionultimatelydeterminingdiversebehaviorThusbondscontrolscells'responseneedselucidatedanalysisbriefresearchreportreportednovelplatformtermed"topo-tensionTGT"visualizesingle-moleculealignednanopatternsUsingtopo-TGTassayfirsttopography-inducedcancerousnormalcomparedpre-definedpeakNexttensionsunderneathidentifiedusingreconstructedmapsresultcharacterizedcell'scapabilitycomplynanotopographiesmagnitudeAltogetherinformationwillvaluablebasisunderstandingbiophysicalmechanismsunderlyingbalanceinfluencingCharacterizationIntegrinMolecularTensionHumanBreastCancerCellsAnisotropicNanopatternsnanopatternmechanobiologymolecularsensor

Similar Articles

Cited By