Genomic and Biocontrol Potential of the Crude Lipopeptide by HD-087 Against .

Wei Liu, Jiawen Wang, Shan Li, Huaqian Zhang, Li Meng, Liping Liu, Wenxiang Ping, Chunmei Du
Author Information
  1. Wei Liu: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  2. Jiawen Wang: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  3. Shan Li: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  4. Huaqian Zhang: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  5. Li Meng: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  6. Liping Liu: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  7. Wenxiang Ping: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  8. Chunmei Du: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.

Abstract

Rice blast caused by is one of the most destructive plant diseases. The secondary metabolites of have potential as biological control agents against . However, no commercial secondary antimicrobial products of have been found by gene prediction, and, particularly relevant for this study, a biocontrol agent obtained from has yet to be found. In this research, genomic analysis was used to predict the secondary metabolites of , and the ability to develop biocontrol pharmaceuticals rapidly was demonstrated. The complete genome of the HD-087 strain was sequenced and revealed a number of key functional gene clusters that contribute to the biosynthesis of active secondary metabolites. The crude extract of lipopeptides (CEL) predicted by NRPS gene clusters was extracted from the fermentation liquid of HD-087 by acid precipitation followed by methanol extraction, and surfactins, iturins, and fengycins were identified by liquid chromatography-mass spectrometry (LC-MS). , the CEL of this strain inhibited spore germination and appressorial formation of by destroying membrane integrity and through the leakage of cellular components. , this CEL reduced the disease index of rice blast by approximately 76.9% on detached leaves, whereas its control effect on leaf blast during pot experiments was approximately 60%. Thus, the CEL appears to be a highly suitable alternative to synthetic chemical fungicides for controlling .

Keywords

References

  1. J Appl Microbiol. 2017 Jan;122(1):139-152 [PMID: 27665751]
  2. Front Microbiol. 2019 Mar 13;10:482 [PMID: 30918502]
  3. Front Microbiol. 2020 Oct 26;11:570219 [PMID: 33193163]
  4. Microb Cell Fact. 2019 Feb 28;18(1):42 [PMID: 30819187]
  5. Front Microbiol. 2020 Dec 03;11:602591 [PMID: 33343545]
  6. Nat Microbiol. 2020 Aug;5(8):1002-1010 [PMID: 32393858]
  7. Int J Mol Sci. 2022 Mar 29;23(7): [PMID: 35409115]
  8. PLoS Pathog. 2021 Jan 7;17(1):e1009080 [PMID: 33411855]
  9. Drug Discov Ther. 2018;12(6):318-328 [PMID: 30674766]
  10. Front Microbiol. 2015 Apr 07;6:273 [PMID: 25904906]
  11. Crit Rev Biotechnol. 2021 Nov;41(7):994-1022 [PMID: 34006149]
  12. Front Microbiol. 2017 Jan 17;8:3 [PMID: 28144236]
  13. Environ Sci Pollut Res Int. 2021 Jul;28(27):36535-36550 [PMID: 33704638]
  14. Autophagy. 2020 May;16(5):900-916 [PMID: 31313634]
  15. AMB Express. 2019 Jul 27;9(1):120 [PMID: 31352542]
  16. J Appl Microbiol. 2015 Oct;119(4):1023-34 [PMID: 26171834]
  17. Front Microbiol. 2019 Jun 28;10:1390 [PMID: 31316480]
  18. Fungal Genet Biol. 1998 Jun-Jul;24(1-2):228-39 [PMID: 9742203]
  19. Int J Mol Sci. 2021 May 13;22(10): [PMID: 34068366]
  20. Bioorg Chem. 2020 Aug;101:103954 [PMID: 32506015]
  21. Front Microbiol. 2021 Mar 24;12:616937 [PMID: 33841348]
  22. World J Microbiol Biotechnol. 2012 Sep;28(9):2919-27 [PMID: 22806732]
  23. Front Microbiol. 2016 Mar 18;7:347 [PMID: 27047463]
  24. J Nat Prod. 2019 Jul 26;82(7):2038-2053 [PMID: 31287310]
  25. Sci Rep. 2017 Jan 09;7:40018 [PMID: 28067330]
  26. Molecules. 2020 Oct 27;25(21): [PMID: 33121115]
  27. J Gen Appl Microbiol. 2010 Oct;56(5):399-402 [PMID: 21099136]
  28. Microbiol Res. 2021 Oct;251:126815 [PMID: 34284299]
  29. Microbiol Resour Announc. 2019 Sep 19;8(38): [PMID: 31537672]
  30. Appl Environ Microbiol. 2015 Oct 30;82(2):478-90 [PMID: 26519395]

Word Cloud

Created with Highcharts 10.0.0secondaryCELblastmetabolitescontrolgeneHD-087biologicalfoundbiocontrolgenomestrainclustersliquidapproximatelyRicecausedonedestructiveplantdiseasespotentialagentsHowevercommercialantimicrobialproductspredictionparticularlyrelevantstudyagentobtainedyetresearchgenomicanalysisusedpredictabilitydeveloppharmaceuticalsrapidlydemonstratedcompletesequencedrevealednumberkeyfunctionalcontributebiosynthesisactivecrudeextractlipopeptidespredictedNRPSextractedfermentationacidprecipitationfollowedmethanolextractionsurfactinsiturinsfengycinsidentifiedchromatography-massspectrometryLC-MSinhibitedsporegerminationappressorialformationdestroyingmembraneintegrityleakagecellularcomponentsreduceddiseaseindexrice769%detachedleaveswhereaseffectleafpotexperiments60%ThusappearshighlysuitablealternativesyntheticchemicalfungicidescontrollingGenomicBiocontrolPotentialCrudeLipopeptideMagnaportheoryzaeStreptomycesbikiniensislipopeptidewhole

Similar Articles

Cited By