Linker engineering in metal-organic frameworks for dark photocatalysis.

Yating Pan, Jingxue Wang, Shengyi Chen, Weijie Yang, Chunmei Ding, Amir Waseem, Hai-Long Jiang
Author Information
  1. Yating Pan: Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China jianglab@ustc.edu.cn.
  2. Jingxue Wang: Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China jianglab@ustc.edu.cn.
  3. Shengyi Chen: School of Energy and Power Engineering, North China Electric Power University Baoding 071003 P. R. China.
  4. Weijie Yang: School of Energy and Power Engineering, North China Electric Power University Baoding 071003 P. R. China. ORCID
  5. Chunmei Ding: Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China.
  6. Amir Waseem: Department of Chemistry, Quaid-i-Azam University Islamabad 45320 I. R. Pakistan. ORCID
  7. Hai-Long Jiang: Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China jianglab@ustc.edu.cn. ORCID

Abstract

Dark reactions featuring continuous activity under light off conditions play a critical role in natural photosynthesis. However, most artificial photocatalysts are inactive upon the removal of the light source, and the artificial photocatalysts with dark photocatalysis abilities have been rarely explored. Herein, we report a Ti-based metal-organic framework (MOF), MIL-125, exhibiting the capability of dark photocatalytic hydrogen production. Remarkably, the introduction of different functional groups onto the linkers enables distinctly different activities of the resulting MOFs (MIL-125-X, X = NH, NO, Br). Dynamic and thermodynamic investigations indicate that the production and lifetime of the Ti intermediate are the key factors, due to the electron-donating/-withdrawing effect of the functional groups. As far as we know, this is the first report on dark photocatalysis over MOFs, providing new insights into the storage of irradiation energy and demonstrating their great potential in dark photocatalysis due to the great MOF diversity.

References

  1. J Am Chem Soc. 2013 Jul 31;135(30):10942-5 [PMID: 23841821]
  2. Angew Chem Int Ed Engl. 2020 Jun 8;59(24):9653-9658 [PMID: 32181560]
  3. Chem Soc Rev. 2019 Apr 1;48(7):1908-1971 [PMID: 30855624]
  4. J Am Chem Soc. 2020 Jul 15;142(28):12515-12523 [PMID: 32564596]
  5. Chem Soc Rev. 2014 Aug 21;43(16):5982-93 [PMID: 24769551]
  6. Science. 2013 Aug 30;341(6149):1230444 [PMID: 23990564]
  7. Angew Chem Int Ed Engl. 2019 Jan 28;58(5):1340-1344 [PMID: 30537395]
  8. Acc Chem Res. 2009 Dec 21;42(12):1899-909 [PMID: 19757805]
  9. J Am Chem Soc. 2015 Oct 28;137(42):13440-3 [PMID: 26434687]
  10. J Am Chem Soc. 2018 Jan 10;140(1):38-41 [PMID: 29258308]
  11. J Am Chem Soc. 2018 Nov 28;140(47):16184-16189 [PMID: 30392350]
  12. Angew Chem Int Ed Engl. 2016 Nov 7;55(46):14310-14314 [PMID: 27736031]
  13. Chem Soc Rev. 2020 Oct 19;49(20):7406-7427 [PMID: 32955065]
  14. Angew Chem Int Ed Engl. 2018 Jan 22;57(4):1103-1107 [PMID: 29215207]
  15. Angew Chem Int Ed Engl. 2018 Jul 26;57(31):9864-9869 [PMID: 29898244]
  16. Adv Mater. 2020 Apr;32(16):e1908505 [PMID: 32125728]
  17. Angew Chem Int Ed Engl. 2019 Apr 8;58(16):5226-5231 [PMID: 30656814]
  18. J Am Chem Soc. 2019 Dec 4;141(48):19110-19117 [PMID: 31707780]
  19. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  20. Sci Rep. 2016 Mar 29;6:23676 [PMID: 27020767]
  21. Adv Mater. 2018 Sep;30(37):e1703663 [PMID: 29178384]
  22. Chem Mater. 2019 Sep 24;31(18):7478-7486 [PMID: 31582875]
  23. Angew Chem Int Ed Engl. 2012 Apr 2;51(14):3364-7 [PMID: 22359408]
  24. ChemSusChem. 2018 Mar 9;11(5):809-820 [PMID: 29316318]
  25. J Chem Phys. 2010 Apr 21;132(15):154104 [PMID: 20423165]
  26. Chem Soc Rev. 2014 Nov 21;43(22):7787-812 [PMID: 24429542]
  27. J Comput Chem. 2012 Feb 15;33(5):580-92 [PMID: 22162017]
  28. Angew Chem Int Ed Engl. 2019 Jun 3;58(23):7718-7722 [PMID: 30919535]
  29. ACS Appl Mater Interfaces. 2017 Jul 5;9(26):21738-21746 [PMID: 28613811]
  30. J Comput Chem. 2011 May;32(7):1456-65 [PMID: 21370243]
  31. Angew Chem Int Ed Engl. 2017 Jan 9;56(2):510-514 [PMID: 27930846]
  32. J Am Chem Soc. 2016 Jul 20;138(28):8698-701 [PMID: 27356034]
  33. J Am Chem Soc. 2009 Aug 12;131(31):10857-9 [PMID: 19621926]
  34. J Am Chem Soc. 2017 Jun 21;139(24):8222-8228 [PMID: 28535334]
  35. Angew Chem Int Ed Engl. 2017 Mar 6;56(11):3036-3040 [PMID: 28170148]
  36. Chem Soc Rev. 2020 Dec 21;49(24):9028-9056 [PMID: 33135701]
  37. Chem Rev. 2020 Jan 22;120(2):919-985 [PMID: 31393702]
  38. Sci Adv. 2017 Aug 18;3(8):e1701162 [PMID: 28835929]
  39. Nat Commun. 2017 Aug 25;8(1):361 [PMID: 28842552]
  40. Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305 [PMID: 16240044]
  41. ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5629-39 [PMID: 24673595]
  42. Dalton Trans. 2019 Jun 21;48(23):8221-8226 [PMID: 31090769]
  43. Chem Soc Rev. 2018 Nov 12;47(22):8134-8172 [PMID: 30003212]
  44. Adv Mater. 2016 Oct;28(40):8819-8860 [PMID: 27454668]
  45. Chem Soc Rev. 2014 Aug 21;43(16):5415-8 [PMID: 25011480]
  46. Nat Commun. 2021 Feb 5;12(1):813 [PMID: 33547305]
  47. J Am Chem Soc. 2018 Jun 27;140(25):7904-7912 [PMID: 29807431]

Word Cloud

Created with Highcharts 10.0.0darkphotocatalysislightartificialphotocatalystsreportmetal-organicMOFproductiondifferentfunctionalgroupsMOFsduegreatDarkreactionsfeaturingcontinuousactivityconditionsplaycriticalrolenaturalphotosynthesisHoweverinactiveuponremovalsourceabilitiesrarelyexploredHereinTi-basedframeworkMIL-125exhibitingcapabilityphotocatalytichydrogenRemarkablyintroductionontolinkersenablesdistinctlyactivitiesresultingMIL-125-XX=NHNOBrDynamicthermodynamicinvestigationsindicatelifetimeTiintermediatekeyfactorselectron-donating/-withdrawingeffectfarknowfirstprovidingnewinsightsstorageirradiationenergydemonstratingpotentialdiversityLinkerengineeringframeworks

Similar Articles

Cited By