Sports activities at a young age decrease hypertension risk-The J-Fit study.

Hiroshi Kumagai, Eri Miyamoto-Mikami, Yuki Someya, Tetsuhiro Kidokoro, Brendan Miller, Michi Emma Kumagai, Masaki Yoshioka, Youngju Choi, Kaname Tagawa, Seiji Maeda, Yoshimitsu Kohmura, Koya Suzuki, Shuichi Machida, Hisashi Naito, Noriyuki Fuku
Author Information
  1. Hiroshi Kumagai: Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan. ORCID
  2. Eri Miyamoto-Mikami: Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.
  3. Yuki Someya: Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.
  4. Tetsuhiro Kidokoro: Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan.
  5. Brendan Miller: The Leonard Davis School of Gerontology, University of Southern California, California, Los Angeles, California, USA.
  6. Michi Emma Kumagai: The Leonard Davis School of Gerontology, University of Southern California, California, Los Angeles, California, USA.
  7. Masaki Yoshioka: Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
  8. Youngju Choi: Institute of Sports & Arts Convergence, Inha University, Incheon, South Korea.
  9. Kaname Tagawa: Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
  10. Seiji Maeda: Faculty of Sport Sciences, Waseda University, Saitama, Japan.
  11. Yoshimitsu Kohmura: Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.
  12. Koya Suzuki: Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan. ORCID
  13. Shuichi Machida: Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan. ORCID
  14. Hisashi Naito: Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan. ORCID
  15. Noriyuki Fuku: Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.

Abstract

This study aimed to assess (1) blood pressure between young, current athletes, and non-athletes early in life; (2) hypertension prevalence between former athletes and the general population later in life; and (3) understand the mechanisms between exercise training and hypertension risks in the form of DNA methylation. Study 1: A total of 354 young male participants, including current athletes, underwent blood pressure assessment. Study 2: The prevalence of hypertension in 1269 male former athletes was compared with that in the Japanese general population. Current and former athletes were divided into three groups: endurance-, mixed-, and sprint/power-group. Study 3: We analyzed the effect of aerobic- or resistance-training on DNA methylation patterns using publicly available datasets to explore the possible underlying mechanisms. In young, current athletes, the mixed- and sprint/power-group exhibited higher systolic blood pressure, and all groups exhibited higher pulse pressure than non-athletes. In contrast, the prevalence of hypertension in former athletes was significantly lower in all groups than in the general population. Compared to endurance-group (reference), adjusted-hazard ratios for the incidence of hypertension among mixed- and sprint/power-group were 1.24 (0.87-1.84) and 1.50 (1.04-2.23), respectively. Moreover, aerobic- and resistance-training commonly modified over 3000 DNA methylation sites in skeletal muscle, and these were suggested to be associated with cardiovascular function-related pathways. These findings suggest that the high blood pressure induced by exercise training at a young age does not influence the development of future hypertension. Furthermore, previous exercise training experiences at a young age could decrease the risk of future hypertension.

Keywords

References

  1. Br J Sports Med. 2016 Sep;50(17):1075-80 [PMID: 27231335]
  2. J Biol Chem. 2004 Jun 18;279(25):26274-9 [PMID: 15087458]
  3. Front Psychol. 2020 Aug 25;11:2139 [PMID: 32982875]
  4. Int J Sports Med. 1997 Jul;18 Suppl 3:S200-3 [PMID: 9272849]
  5. Regul Pept. 2001 Jun 15;99(2-3):87-92 [PMID: 11384769]
  6. Appl Physiol Nutr Metab. 2018 May;43(5):510-516 [PMID: 29253352]
  7. BMJ. 2012 Nov 20;345:e7279 [PMID: 23169869]
  8. Circulation. 2004 Nov 2;110(18):2858-63 [PMID: 15492301]
  9. Br J Sports Med. 2017 Feb;51(4):238-243 [PMID: 28039126]
  10. Epigenetics. 2014 Dec;9(12):1557-69 [PMID: 25484259]
  11. Hypertension. 2000 Oct;36(4):631-7 [PMID: 11040249]
  12. Med Sci Sports Exerc. 1994 Jul;26(7):857-65 [PMID: 7934759]
  13. Circ Res. 2007 Jun 8;100(11):1556-68 [PMID: 17556669]
  14. Br J Sports Med. 2019 Jul;53(14):859-869 [PMID: 30563873]
  15. Am J Physiol Heart Circ Physiol. 2014 Feb;306(3):H348-55 [PMID: 24322608]
  16. Eur J Epidemiol. 2018 Jun;33(6):531-543 [PMID: 29730745]
  17. PLoS One. 2020 Jan 30;15(1):e0227728 [PMID: 31999706]
  18. J Am Soc Nephrol. 2004 Oct;15(10):2713-8 [PMID: 15466276]
  19. Hypertension. 2018 Nov;72(5):1236-1242 [PMID: 30354803]
  20. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  21. Hypertension. 2013 Sep;62(3):634-40 [PMID: 23918749]
  22. Br J Sports Med. 2021 Feb;55(4):206-212 [PMID: 32727712]
  23. Cell Metab. 2015 Jan 6;21(1):138-49 [PMID: 25565211]
  24. Am J Hypertens. 2014 Mar;27(3):415-21 [PMID: 24280041]
  25. Nature. 2017 Jan 5;541(7635):81-86 [PMID: 28002404]
  26. Hypertens Res. 2017 May;40(5):493-495 [PMID: 28100923]
  27. Hypertension. 2003 Jan;41(1):130-5 [PMID: 12511542]
  28. Epigenetics. 2018;13(6):655-664 [PMID: 30044683]
  29. Acta Physiol (Oxf). 2015 Jan;213(1):39-59 [PMID: 25345837]
  30. Lancet. 2015 Jul 18;386(9990):266-73 [PMID: 25982160]
  31. N Engl J Med. 1986 Mar 6;314(10):605-13 [PMID: 3945246]
  32. Semin Immunopathol. 2016 May;38(3):339-56 [PMID: 26482920]
  33. N Engl J Med. 1993 Feb 25;328(8):538-45 [PMID: 8426621]
  34. J Am Coll Cardiol. 2008 Sep 9;52(11):908-13 [PMID: 18772060]
  35. Circulation. 2000 Sep 12;102(11):1270-5 [PMID: 10982542]
  36. Bioinformatics. 2016 Jan 15;32(2):286-8 [PMID: 26424855]
  37. Physiol Rep. 2022 Jun;10(12):e15364 [PMID: 35757903]
  38. Circulation. 2008 Feb 5;117(5):614-22 [PMID: 18212278]
  39. JAMA. 1989 Nov 3;262(17):2395-401 [PMID: 2795824]
  40. J Am Heart Assoc. 2018 May 5;7(10): [PMID: 29730645]
  41. Sports Med Open. 2017 Dec;3(1):8 [PMID: 28161872]
  42. Am J Hypertens. 2007 Sep;20(9):967-73 [PMID: 17765138]
  43. J Hum Kinet. 2019 Nov 30;70:81-92 [PMID: 31915478]
  44. Sports Med Open. 2015;1(1):16 [PMID: 26301178]
  45. PLoS One. 2014 Apr 01;9(4):e93545 [PMID: 24691252]
  46. Bioinformatics. 2008 Jul 1;24(13):1547-8 [PMID: 18467348]
  47. Pharmacol Rev. 1996 Jun;48(2):179-211 [PMID: 8804103]
  48. Br J Sports Med. 2017 May;51(10):812-817 [PMID: 27895075]
  49. Sci Rep. 2018 Jan 30;8(1):1898 [PMID: 29382913]
  50. BMJ Open Sport Exerc Med. 2019 Nov 13;5(1):e000653 [PMID: 32206340]

MeSH Term

Athletes
Blood Pressure
Exercise
Humans
Hypertension
Male
Sports

Word Cloud

Created with Highcharts 10.0.0athleteshypertensionpressureyoungbloodformer1exerciseDNAmethylationcurrentprevalencegeneralpopulationtrainingStudymixed-sprint/power-groupagestudynon-athleteslifemechanismsmaleaerobic-resistance-trainingexhibitedhighergroupsfuturedecreaseaimedassessearly2later3understandrisksform1:total354participantsincludingunderwentassessment2:1269comparedJapaneseCurrentdividedthreegroups:endurance-3:analyzedeffectpatternsusingpubliclyavailabledatasetsexplorepossibleunderlyingsystolicpulsecontrastsignificantlylowerComparedendurance-groupreferenceadjusted-hazardratiosincidenceamong24087-1845004-223respectivelyMoreovercommonlymodified3000sitesskeletalmusclesuggestedassociatedcardiovascularfunction-relatedpathwaysfindingssuggesthighinducedinfluencedevelopmentFurthermorepreviousexperiencesriskSportsactivitiesrisk-TheJ-Fitexperienceyoung athletes

Similar Articles

Cited By (2)