Salvianolic acid A promotes mitochondrial biogenesis and function via regulating the AMPK/PGC-1α signaling pathway in HUVECs.

Xuelian Wang, Mi Zhang, Mengyao Zhang, Yantao Han, Xuehong Chen, Wenwen Zhao, Zhiwu Han, Jialin Sun
Author Information
  1. Xuelian Wang: School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China.
  2. Mi Zhang: School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China.
  3. Mengyao Zhang: School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China.
  4. Yantao Han: School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China.
  5. Xuehong Chen: School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China.
  6. Wenwen Zhao: School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China.
  7. Zhiwu Han: Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.
  8. Jialin Sun: Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.

Abstract

Mitochondrial dysregulation is an important pathology that leads to endothelial dysfunction, and the occurrence and development of cardiovascular diseases. Salvianolic acid A (SAA) has been demonstrated to be effective in the treatment of vascular complications of type 2 diabetes mellitus. Limited information has been reported on the effects of SAA on mitochondrial function in endothelial cells. In the present study, the effects of SAA on mitochondrial biogenesis and the related underlying mechanisms were investigated in human umbilical vein endothelial cells (HUVECs). Mitotracker red staining and transmission electron microscopy were used to evaluate the effect of SAA on mitochondrial quality. The effect of SAA treatment on mitochondrial DNA/nuclear DNA ratio of HUVECs was detected by real-time quantitative PCR. Western blot was used to determine the protein expression levels of complex III and Complex IV of mitochondrial oxidative phosphorylation subunit, and ATP production was determined by ATP test kit. Real-time quantitative PCR and Western blot were used to determine the effects of SAA on the expression of peroxisome proliferator-activated receptor γ coactivator (PGC-1α) and its target genes nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) proteins and genes. Finally, in the presence of 5'AMP-activated protein kinase (AMPK) specific inhibitors, the expression of PGC-1α, NRF1 and TFAM proteins and the phosphorylation levels of AMPK and Acetyl CoA Carboxylase (ACC) were detected by Western blot or real-time quantitative PCR. The results showed that SAA treatment significantly promoted mitochondrial biogenesis and enhanced mitochondrial function of HUVECs. SAA significantly increased the expression levels of PGC-1α and its target genes NRF1 and (TFAM), a key regulator of mitochondrial biogenesis in HUVECs. These enhancements were accompanied by significantly increased phosphorylation of AMPK and ACC, and were significantly inhibited by specific AMPK inhibitors. These results suggest that SAA may promote mitochondrial biogenesis in endothelial cells by activating the AMPK-mediated PGC-1α/TFAM signaling pathway. These data provide new insights into the mechanism of action of SAA in treating diabetic vascular complications.

Keywords

References

  1. Pharmacol Res. 2020 Aug;158:104893 [PMID: 32434053]
  2. Planta Med. 1984 Jun;50(3):227-8 [PMID: 17340301]
  3. Brain Res. 2019 Jul 1;1714:126-132 [PMID: 30826352]
  4. J Smooth Muscle Res. 2012;48(1):1-26 [PMID: 22504486]
  5. Biomed Pharmacother. 2020 May;125:109767 [PMID: 32058210]
  6. J Cell Physiol. 2019 Mar;234(3):2436-2446 [PMID: 30191997]
  7. CNS Neurosci Ther. 2017 Jan;23(1):5-22 [PMID: 27873462]
  8. Biochem Biophys Res Commun. 2018 Feb 26;497(1):292-297 [PMID: 29432738]
  9. Biochem Biophys Res Commun. 2019 Aug 27;516(3):1019-1025 [PMID: 27150625]
  10. Food Funct. 2021 Mar 7;12(5):2171-2188 [PMID: 33566044]
  11. Rejuvenation Res. 2021 Apr;24(2):104-119 [PMID: 32746712]
  12. J Food Sci. 2019 Aug;84(8):2101-2111 [PMID: 31369153]
  13. Brain Behav Immun. 2022 May;102:53-70 [PMID: 35151829]
  14. Clin Sci (Lond). 2016 Dec 1;130(23):2181-2198 [PMID: 27613156]
  15. Vascul Pharmacol. 2020 Jan;124:106632 [PMID: 31759113]
  16. Cell Physiol Biochem. 2015;36(1):395-408 [PMID: 25967977]
  17. Bioengineered. 2021 Dec;12(1):4349-4360 [PMID: 34308769]
  18. Acta Pharmacol Sin. 2021 May;42(5):665-678 [PMID: 32860006]
  19. Ecotoxicol Environ Saf. 2021 Sep 15;221:112447 [PMID: 34175824]
  20. Placenta. 2013 Jul;34(7):613-8 [PMID: 23601695]
  21. Acta Pharmacol Sin. 2019 Jan;40(1):1-8 [PMID: 29867137]
  22. Chem Biol Interact. 2021 Oct 1;348:109625 [PMID: 34416245]
  23. Biochem Biophys Res Commun. 2016 Feb 19;470(4):961-6 [PMID: 26797282]
  24. J Biol Chem. 2016 Oct 14;291(42):22288-22301 [PMID: 27417135]
  25. J Neurosci Res. 2017 Oct;95(10):2025-2029 [PMID: 28301064]
  26. Theranostics. 2020 Mar 26;10(11):4822-4838 [PMID: 32308752]
  27. Can J Physiol Pharmacol. 2022 Jan;100(1):26-34 [PMID: 34411489]
  28. Neuroscience. 2020 Apr 15;432:63-72 [PMID: 32114097]
  29. Int Rev Neurobiol. 2019;145:177-209 [PMID: 31208524]
  30. Mol Med. 2015 Oct 27;21 Suppl 1:S32-40 [PMID: 26605646]
  31. J Agric Food Chem. 2018 Nov 14;66(45):11917-11925 [PMID: 30369237]
  32. Exp Biol Med (Maywood). 2021 Mar;246(5):596-606 [PMID: 33215523]
  33. Cardiovasc Diabetol. 2018 Dec 27;17(1):160 [PMID: 30591063]
  34. Int J Clin Pract. 2011 Feb;65(2):148-53 [PMID: 21235695]
  35. J Mol Endocrinol. 2019 Nov;63(4):R103-R115 [PMID: 31600719]
  36. Biochim Biophys Acta Gen Subj. 2017 Jan;1861(1 Pt A):3085-3094 [PMID: 27793739]
  37. ACS Chem Neurosci. 2021 Jan 20;12(2):323-329 [PMID: 33415987]
  38. Eur J Pharmacol. 2021 Mar 15;895:173865 [PMID: 33460616]
  39. J Diabetes Complications. 2016 May-Jun;30(4):738-45 [PMID: 26781070]
  40. J Steroid Biochem Mol Biol. 2020 Apr;198:105575 [PMID: 31899316]
  41. Curr Opin Endocr Metab Res. 2019 Mar;5:37-44 [PMID: 31406949]

Word Cloud

Created with Highcharts 10.0.0mitochondrialSAAbiogenesisHUVECsendothelialexpressionAMPKsignificantlyacidtreatmentvascularcomplicationseffectsfunctioncellsusedquantitativePCRWesternblotproteinlevelsphosphorylationPGC-1αgenesfactorNRF1TFAMSalvianoliceffectdetectedreal-timedetermineATPperoxisomeproliferator-activatedreceptorγcoactivatortargettranscriptionproteins5'AMP-activatedkinasespecificinhibitorsACCresultsincreasedsignalingpathwaydiabeticMitochondrialdysregulationimportantpathologyleadsdysfunctionoccurrencedevelopmentcardiovasculardiseasesdemonstratedeffectivetype2diabetesmellitusLimitedinformationreportedpresentstudyrelatedunderlyingmechanismsinvestigatedhumanumbilicalveinMitotrackerredstainingtransmissionelectronmicroscopyevaluatequalityDNA/nuclearDNAratiocomplexIIIComplexIVoxidativesubunitproductiondeterminedtestkitReal-timenuclearrespiratory1FinallypresenceAcetylCoACarboxylaseshowedpromotedenhancedkeyregulatorenhancementsaccompaniedinhibitedsuggestmaypromoteactivatingAMPK-mediatedPGC-1α/TFAMdataprovidenewinsightsmechanismactiontreatingpromotesviaregulatingAMPK/PGC-1α1-α/mitochondrialsalvianolic

Similar Articles

Cited By