Optimal timing of non-pharmaceutical interventions during an epidemic.

Nick F D Huberts, Jacco J J Thijssen
Author Information
  1. Nick F D Huberts: Management School, University of York, Heslington, York YO10 5ZF, United Kingdom.
  2. Jacco J J Thijssen: Management School, University of York, Heslington, York YO10 5ZF, United Kingdom.

Abstract

In response to the recent outbreak of the SARS-CoV-2 virus governments have aimed to reduce the virus's spread through, , non-pharmaceutical intervention. We address the question when such measures should be implemented and, once implemented, when to remove them. These issues are viewed through a real-options lens and we develop an SIRD-like continuous-time Markov chain model to analyze a sequence of options: the option to intervene and introduce measures and, after intervention has started, the option to remove these. Measures can be imposed multiple times. We implement our model using estimates from empirical studies and, under fairly general assumptions, our main conclusions are that: (1) measures should be put in place not long after the first infections occur; (2) if the epidemic is discovered when there are many infected individuals already, then it is optimal never to introduce measures; (3) once the decision to introduce measures has been taken, these should stay in place until the number of susceptible or infected members of the population is close to zero; (4) it is never optimal to introduce a tier system to phase-in measures but it is optimal to use a tier system to phase-out measures; (5) a more infectious variant may reduce the duration of measures being in place; (6) the risk of infections being brought in by travelers should be curbed even when no other measures are in place. These results are robust to several variations of our base-case model.

Keywords

References

  1. Cell Discov. 2020 Feb 24;6:10 [PMID: 32133152]
  2. Ann Oper Res. 2022;319(1):823-851 [PMID: 33531729]
  3. Nature. 2021 Jan;589(7841):276-280 [PMID: 33086375]
  4. J Math Econ. 2021 Mar;93:102453 [PMID: 33324027]
  5. BMC Public Health. 2022 Apr 7;22(1):679 [PMID: 35392861]
  6. PLoS Med. 2010 Oct 05;7(10): [PMID: 20957189]
  7. Eur J Oper Res. 2023 Jan 1;304(1):169-182 [PMID: 34697518]
  8. Science. 2020 Jul 10;369(6500):208-211 [PMID: 32404476]
  9. J Travel Med. 2020 Mar 13;27(2): [PMID: 32052846]
  10. Front Med (Lausanne). 2020 Jun 05;7:274 [PMID: 32582739]
  11. Eur J Oper Res. 2023 Jan 1;304(1):276-291 [PMID: 34744293]
  12. Eur J Oper Res. 2023 Jan 1;304(1):84-98 [PMID: 34785855]
  13. Emerg Infect Dis. 2010 Mar;16(3):538-41 [PMID: 20202441]
  14. Eur J Oper Res. 2023 Jan 1;304(1):308-324 [PMID: 34848917]
  15. BMC Med. 2020 Jul 30;18(1):240 [PMID: 32727547]
  16. Int J Hyg Environ Health. 2020 Jul;228:113555 [PMID: 32460229]
  17. J Econom. 2021 Jan;220(1):181-192 [PMID: 32377030]
  18. Ann Oper Res. 2022;317(1):5-18 [PMID: 33583990]
  19. Eur J Oper Res. 2023 Jan 1;304(1):57-68 [PMID: 34413569]
  20. PLoS Curr. 2009 Dec 20;1:RRN1139 [PMID: 20043033]
  21. Lancet. 2020 Mar 21;395(10228):931-934 [PMID: 32164834]
  22. Eur J Oper Res. 2023 Jan 1;304(1):139-149 [PMID: 34316090]
  23. Eur J Oper Res. 2023 Jan 1;304(1):325-338 [PMID: 34785854]
  24. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  25. Sci Rep. 2021 Feb 18;11(1):3504 [PMID: 33603008]
  26. BMJ. 2021 Nov 17;375:e068302 [PMID: 34789505]
  27. Eur J Oper Res. 2023 Jan 1;304(1):339-352 [PMID: 33776195]
  28. Ann Oper Res. 2021 Mar 5;:1-17 [PMID: 33688111]
  29. Int J Infect Dis. 2020 Mar;92:214-217 [PMID: 32007643]
  30. JAMA. 2009 Sep 16;302(11):1221-2 [PMID: 19755702]
  31. J Math Econ. 2021 Mar;93:102489 [PMID: 33558783]
  32. Sci Rep. 2020 Nov 10;10(1):19457 [PMID: 33173127]
  33. Eur J Oper Res. 2022 Aug 16;301(1):1-17 [PMID: 34728892]
  34. BMJ. 2009 Nov 19;339:b4571 [PMID: 19926697]
  35. Eur J Oper Res. 2021 Jun 16;291(3):929-934 [PMID: 32836716]
  36. Nat Med. 2020 May;26(5):672-675 [PMID: 32296168]
  37. Eur J Oper Res. 2023 Jan 1;304(1):25-41 [PMID: 34219901]
  38. Nature. 2005 Sep 8;437(7056):209-14 [PMID: 16079797]
  39. Eur J Oper Res. 2021 Apr 1;290(1):99-115 [PMID: 32836717]
  40. Eur J Oper Res. 2021 Sep 16;293(3):880-891 [PMID: 33519049]
  41. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7582-7 [PMID: 17416679]
  42. Ann Oper Res. 2021 Jun 4;:1-27 [PMID: 34103780]
  43. J Optim Theory Appl. 2021;189(2):408-436 [PMID: 33678904]
  44. Ann Intern Med. 2009 Oct 6;151(7):437-46 [PMID: 19652172]
  45. Health Econ. 2010 Nov;19(11):1345-60 [PMID: 19816886]
  46. J Math Ind. 2020;10(1):23 [PMID: 32834921]

Word Cloud

Created with Highcharts 10.0.0measuresmodelintroduceplaceoptimalreducenon-pharmaceuticalinterventionimplementedremoveMarkovoptioninfectionsepidemicinfectednevertiersystemOptimalresponserecentoutbreakSARS-CoV-2virusgovernmentsaimedvirus'sspreadaddressquestionissuesviewedreal-optionslensdevelopSIRD-likecontinuous-timechainanalyzesequenceoptions:intervenestartedMeasurescanimposedmultipletimesimplementusingestimatesempiricalstudiesfairlygeneralassumptionsmainconclusionsthat:1putlongfirstoccur2discoveredmanyindividualsalready3decisiontakenstaynumbersusceptiblememberspopulationclosezero4phase-inusephase-out5infectiousvariantmayduration6riskbroughttravelerscurbedevenresultsrobustseveralvariationsbase-casetiminginterventionsCOVID-19Continuous-timechainsDecisionanalysisstoppingSIRD

Similar Articles

Cited By