Sucker Shapes, Skeletons, and Bioinspiration: How Hard and Soft Tissue Morphology Generates Adhesive Performance in Waterfall Climbing Goby Fishes.

A M Palecek, H L Schoenfuss, R W Blob
Author Information
  1. A M Palecek: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA. ORCID
  2. H L Schoenfuss: Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA.
  3. R W Blob: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA. ORCID

Abstract

Many teleost fish, such as Gobies, have fused their paired pelvic fins into an adhesive disc. Gobies can use their pelvic suckers to generate passive adhesive forces (as in engineered suction cups), and different species exhibit a range of adhesive performance, with some even able to climb waterfalls. Previous studies have documented that, in the Hawaiian Islands, species capable of climbing higher waterfalls produce the highest passive pull-off forces, and species found at higher elevation sites are likely to have more rounded suction discs than those found in the lowest stream segments. Morphology of the pelvic girdle also varies between species, with more robust skeletons in taxa with superior passive adhesion. To investigate what factors impact the passive adhesive performance of waterfall climbing Gobies, we tested biomimetic suction cups designed with a range of shapes and embedded bioinspired "skeletons" based on micro-CT scans of goby pelvic girdles. We found that while the presence of an internal skeleton may provide some support against failure, the performance of suction cups may be more strongly affected by their external shape. Nonetheless, factors besides external shape and skeletal morphology may still have a stronger influence on sucker tenacity. Our results suggest that the relationship between suction disc morphology and adhesive performance may be influenced by a variety of physical factors, and live animal performance likely is further complicated by muscle activation and climbing behavior. These results have implications for the evolution of suction disc shape in adhesive fish and for improving the design of biomimetic suction cups.

References

  1. Integr Org Biol. 2020 Apr 10;2(1):obaa009 [PMID: 33791553]
  2. Integr Comp Biol. 2005 Apr;45(2):256-62 [PMID: 21676769]
  3. J Morphol. 2014 Apr;275(4):431-41 [PMID: 24741713]
  4. Integr Comp Biol. 2010 Dec;50(6):1185-99 [PMID: 21558266]
  5. J Morphol. 2013 Jul;274(7):733-42 [PMID: 23450656]
  6. Sci Rep. 2019 Nov 12;9(1):16571 [PMID: 31719624]
  7. Zoology (Jena). 2013 Jun;116(3):144-50 [PMID: 23477972]
  8. PLoS One. 2013 Dec 27;8(12):e84851 [PMID: 24386424]
  9. Soft Robot. 2020 Oct;7(5):639-648 [PMID: 32096693]
  10. Biofouling. 2006;22(3-4):187-200 [PMID: 17290863]
  11. J Exp Biol. 2014 Oct 1;217(Pt 19):3474-82 [PMID: 25104761]
  12. J Exp Biol. 2010 Mar 1;213(5):831-41 [PMID: 20154199]
  13. PLoS One. 2013;8(1):e53274 [PMID: 23308184]
  14. J Exp Biol. 2014 Jul 15;217(Pt 14):2548-54 [PMID: 25031458]
  15. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21146-51 [PMID: 22160688]
  16. Biol Bull. 1995 Apr;188(2):197-209 [PMID: 29281356]
  17. Bioinspir Biomim. 2019 Oct 25;14(6):066016 [PMID: 31553967]
  18. Biol Lett. 2013 May 01;9(3):20130234 [PMID: 23637393]
  19. Evolution. 1993 Jun;47(3):906-914 [PMID: 28567888]
  20. J Exp Biol. 2008 Sep;211(Pt 18):2931-42 [PMID: 18775930]
  21. J Exp Biol. 2012 Aug 1;215(Pt 15):2703-10 [PMID: 22786648]
  22. J Exp Biol. 2021 Jan 21;224(Pt 2): [PMID: 33328291]
  23. Biol Bull. 1990 Apr;178(2):126-136 [PMID: 29314931]
  24. Sci Rep. 2016 Mar 24;6:23711 [PMID: 27010864]
  25. Bioinspir Biomim. 2019 Aug 29;14(5):056014 [PMID: 31382254]
  26. Integr Comp Biol. 2014 Dec;54(6):1058-71 [PMID: 24808012]
  27. Zoology (Jena). 2021 Dec;149:125969 [PMID: 34601374]
  28. Philos Trans R Soc Lond B Biol Sci. 2019 Oct 28;374(1784):20190204 [PMID: 31495305]
  29. Beilstein J Nanotechnol. 2014 Dec 17;5:2424-39 [PMID: 25671138]
  30. J Fish Biol. 2010 Oct;77(6):1173-208 [PMID: 21039499]
  31. Integr Comp Biol. 2008 Dec;48(6):734-49 [PMID: 21669829]
  32. Naturwissenschaften. 2017 Apr;104(3-4):33 [PMID: 28341961]
  33. Zoology (Jena). 2011 Dec;114(6):340-7 [PMID: 21978841]
  34. J Exp Biol. 2015 Nov;218(Pt 22):3551-8 [PMID: 26417010]
  35. PLoS One. 2013 Jun 04;8(6):e65074 [PMID: 23750233]
  36. J Exp Biol. 2012 Nov 15;215(Pt 22):3925-36 [PMID: 23100486]
  37. J Morphol. 2010 Oct;271(10):1219-28 [PMID: 20623523]
  38. J Exp Biol. 2022 May 1;225(9): [PMID: 35467004]
  39. J R Soc Interface. 2013 Nov 27;11(91):20130816 [PMID: 24284894]

Grants

  1. P30 GM131959/NIGMS NIH HHS
  2. P30 GM131959/NIH HHS

MeSH Term

Animals
Adhesives
Suction
Fishes
Rivers
Skeleton

Chemicals

Adhesives

Word Cloud

Created with Highcharts 10.0.0suctionadhesiveperformancepelvicpassivecupsspeciesmaydiscclimbingfoundfactorsshapefishgobiesforcesrangewaterfallshigherlikelyMorphologybiomimeticexternalmorphologyresultsManyteleostfusedpairedfinsGobiescanusesuckersgenerateengineereddifferentexhibitevenableclimbPreviousstudiesdocumentedHawaiianIslandscapableproducehighestpull-offelevationsitesroundeddiscsloweststreamsegmentsgirdlealsovariesrobustskeletonstaxasuperioradhesioninvestigateimpactwaterfalltesteddesignedshapesembeddedbioinspired"skeletons"basedmicro-CTscansgobygirdlespresenceinternalskeletonprovidesupportfailurestronglyaffectedNonethelessbesidesskeletalstillstrongerinfluencesuckertenacitysuggestrelationshipinfluencedvarietyphysicalliveanimalcomplicatedmuscleactivationbehaviorimplicationsevolutionimprovingdesignSuckerShapesSkeletonsBioinspiration:HardSoftTissueGeneratesAdhesivePerformanceWaterfallClimbingGobyFishes

Similar Articles

Cited By (5)