Differential effects of obstructive sleep apnea on the corneal subbasal nerve plexus and retinal nerve fiber layer.

Katherine A Bussan, Whitney L Stuard, Natalia Mussi, Won Lee, Jess T Whitson, Yacine Issioui, Ashley A Rowe, Katherine J Wert, Danielle M Robertson
Author Information
  1. Katherine A Bussan: Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
  2. Whitney L Stuard: Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
  3. Natalia Mussi: Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
  4. Won Lee: Department of Internal Medicine, Clinical Center for Sleep and Breathing Disorders, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
  5. Jess T Whitson: Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
  6. Yacine Issioui: Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America. ORCID
  7. Ashley A Rowe: Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
  8. Katherine J Wert: Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America. ORCID
  9. Danielle M Robertson: Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America. ORCID

Abstract

PURPOSE: Obstructive sleep apnea (OSA) is an established independent risk factor for peripheral neuropathy. Macro and microvascular changes have been documented in OSA, including high levels of potent vasoconstrictors. In diabetes, vasoconstriction has been identified as an underlying risk factor for corneal neuropathy. This study sought to establish a potential relationship between OSA and corneal nerve morphology and sensitivity, and to determine whether changes in corneal nerves may be reflective of OSA severity.
DESIGN: Single center cross-sectional study.
METHODS: Sixty-seven patients were stratified into two groups: those with OSA and healthy controls. Groups were matched for age, sex, race, smoking, and dry eye status. Outcome measures included serologies, a dilated fundus exam, dry eye testing, anthropometric parameters, corneal sensitivity, subbasal nerve plexus morphology, retinal nerve fiber layer (RNFL) thickness, and the use of questionnaires to assess symptoms of dry eye disease, risk of OSA, and continuous positive airway pressure (CPAP) compliance.
RESULTS: No significant differences were observed in corneal nerve morphology, sensitivity, or the number of dendritic cells. In the OSA test group, RNFL thinning was noted in the superior and inferior regions of the optic disc and peripapillary region. A greater proportion of participants in the OSA group required a subsequent evaluation for glaucoma than in the control. In those with OSA, an increase in the apnea hypopnea index was associated with an increase in optic nerve cupping.
CONCLUSIONS: OSA does not exert a robust effect on corneal nerves. OSA is however, associated with thinning of the RNFL. Participants with glaucomatous optic nerve changes and risk factors for OSA should be examined as uncontrolled OSA may exacerbate glaucoma progression.

References

  1. Invest Ophthalmol Vis Sci. 2017 Dec 1;58(14):6105-6112 [PMID: 29214310]
  2. Front Aging Neurosci. 2021 Jan 29;12:584244 [PMID: 33584241]
  3. Optom Vis Sci. 2016 Jan;93(1):63-9 [PMID: 26583788]
  4. Sleep Med Rev. 2018 Apr;38:113-130 [PMID: 29107469]
  5. Curr Eye Res. 2017 Nov;42(11):1552-1560 [PMID: 28910165]
  6. Medicine (Baltimore). 2016 Aug;95(32):e4499 [PMID: 27512867]
  7. Ocul Surf. 2011 Jan;9(1):17-28 [PMID: 21338566]
  8. Am J Respir Crit Care Med. 1999 Jan;159(1):213-9 [PMID: 9872841]
  9. Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3506-3512 [PMID: 28715584]
  10. J Neurol Neurosurg Psychiatry. 2007 Mar;78(3):295-7 [PMID: 17012335]
  11. Electroencephalogr Clin Neurophysiol. 1985 Mar;60(3):214-9 [PMID: 2578929]
  12. Graefes Arch Clin Exp Ophthalmol. 2012 Nov;250(11):1681-8 [PMID: 22411129]
  13. Int J Ophthalmol. 2016 Nov 18;9(11):1651-1656 [PMID: 27990371]
  14. Invest Ophthalmol Vis Sci. 2016 May 1;57(6):2824-30 [PMID: 27227351]
  15. J Neurol. 2021 Nov;268(11):4023-4032 [PMID: 32691237]
  16. Ocul Surf. 2020 Jan;18(1):31-39 [PMID: 31593763]
  17. JAMA. 2003 Oct 8;290(14):1906-14 [PMID: 14532320]
  18. Graefes Arch Clin Exp Ophthalmol. 2008 Jan;246(1):129-34 [PMID: 17676331]
  19. J Hypertens. 1999 Jan;17(1):61-6 [PMID: 10100095]
  20. Cornea. 2018 Apr;37(4):470-473 [PMID: 29319596]
  21. Neurol Sci. 2021 Mar;42(3):871-881 [PMID: 33439389]
  22. Br J Ophthalmol. 2009 Jul;93(7):853-60 [PMID: 19019923]
  23. Clin Exp Ophthalmol. 2015 Mar;43(2):139-44 [PMID: 24995937]
  24. Int J Ophthalmol. 2014 Aug 18;7(4):704-8 [PMID: 25161947]
  25. Diabetologia. 2003 May;46(5):683-8 [PMID: 12739016]
  26. Sleep Med. 2013 Jan;14(1):53-7 [PMID: 22948081]
  27. Biomed Res Int. 2015;2015:951081 [PMID: 26770980]
  28. BMC Ophthalmol. 2021 Nov 12;21(1):391 [PMID: 34772371]
  29. WMJ. 2009 Aug;108(5):246-9 [PMID: 19743755]
  30. Anesthesiology. 1992 Jun;76(6):1018-38 [PMID: 1599088]
  31. Postgrad Med. 2016;128(3):317-22 [PMID: 26918297]
  32. Sleep. 2016 Jan 01;39(1):19-23 [PMID: 26237771]
  33. J Neurol Neurosurg Psychiatry. 2001 May;70(5):685-7 [PMID: 11309469]
  34. Chest. 1989 Feb;95(2):279-83 [PMID: 2914475]
  35. Diabetes Res Clin Pract. 2018 Feb;136:85-92 [PMID: 29221815]
  36. Invest Ophthalmol Vis Sci. 2012 Dec 07;53(13):8067-74 [PMID: 23169880]
  37. J Glaucoma. 2011 Dec;20(9):553-8 [PMID: 20852436]
  38. Optom Vis Sci. 2020 Jan;97(1):9-14 [PMID: 31895272]
  39. Graefes Arch Clin Exp Ophthalmol. 2011 Apr;249(4):585-93 [PMID: 20957386]
  40. Am J Epidemiol. 2013 May 1;177(9):1006-14 [PMID: 23589584]
  41. J Glaucoma. 2007 Jan;16(1):42-6 [PMID: 17224748]
  42. J Neuroophthalmol. 2019 Sep;39(3):370-379 [PMID: 30300256]
  43. Anesthesiology. 2008 May;108(5):812-21 [PMID: 18431116]
  44. Cleve Clin J Med. 2019 Sep;86(9 Suppl 1):2-9 [PMID: 31509498]
  45. PLoS One. 2014 Aug 28;9(8):e105261 [PMID: 25166862]
  46. J Glaucoma. 2021 May 1;30(5):e213-e221 [PMID: 33731645]
  47. J Clin Sleep Med. 2013 Jun 15;9(6):613-8 [PMID: 23772197]
  48. Surv Ophthalmol. 2021 May-Jun;66(3):493-513 [PMID: 32961210]
  49. Ocul Surf. 2015 Jul;13(3):187-203 [PMID: 25998608]
  50. Obes Surg. 2013 Dec;23(12):2050-7 [PMID: 23771818]
  51. Eye Contact Lens. 2009 Nov;35(6):302-8 [PMID: 19901584]
  52. Eye (Lond). 2018 May;32(5):889-903 [PMID: 29391572]
  53. Curr Eye Res. 2017 May;42(5):796-802 [PMID: 27854132]
  54. Vasc Health Risk Manag. 2008;4(6):1327-35 [PMID: 19337546]
  55. Prog Retin Eye Res. 2019 Nov;73:100762 [PMID: 31075321]
  56. Clin Exp Ophthalmol. 2014 Mar;42(2):132-8 [PMID: 23777553]
  57. Lancet Diabetes Endocrinol. 2015 Aug;3(8):653-63 [PMID: 26184671]
  58. J Am Osteopath Assoc. 2016 Aug 1;116(8):522-9 [PMID: 27455101]
  59. Curr Diab Rep. 2013 Aug;13(4):488-99 [PMID: 23666893]
  60. Sleep Breath. 2015 Mar;19(1):129-34 [PMID: 24807117]
  61. Sleep Med Rev. 2017 Aug;34:70-81 [PMID: 27568340]
  62. PLoS One. 2021 Aug 13;16(8):e0256131 [PMID: 34388218]
  63. J Glaucoma. 2016 Apr;25(4):e413-8 [PMID: 26550970]
  64. Eye (Lond). 2005 May;19(5):575-9 [PMID: 15332101]
  65. Int Ophthalmol. 2019 May;39(5):1013-1025 [PMID: 29594838]
  66. Cornea. 2012 Jun;31(6):604-8 [PMID: 22410644]
  67. Chest. 2016 Mar;149(3):631-8 [PMID: 26378880]
  68. Arq Bras Oftalmol. 2016 Jul-Aug;79(4):247-52 [PMID: 27626150]
  69. Sleep. 1999 Aug 1;22(5):667-89 [PMID: 10450601]
  70. BMC Ophthalmol. 2018 Mar 2;18(1):66 [PMID: 29499674]
  71. Arch Intern Med. 2005 Feb 28;165(4):447-52 [PMID: 15738376]

Grants

  1. R01 EY024546/NEI NIH HHS
  2. R21 EY024433/NEI NIH HHS
  3. P30 EY030413/NEI NIH HHS
  4. R21 EY033505/NEI NIH HHS
  5. R01 EY029258/NEI NIH HHS

MeSH Term

Cross-Sectional Studies
Dry Eye Syndromes
Glaucoma
Humans
Nerve Fibers
Retinal Ganglion Cells
Sleep Apnea, Obstructive
Tomography, Optical Coherence

Word Cloud

Created with Highcharts 10.0.0OSAnervecornealriskapneachangesmorphologysensitivitydryeyeRNFLopticsleepfactorneuropathystudynervesmaysubbasalplexusretinalfiberlayergroupthinningglaucomaincreaseassociatedPURPOSE:ObstructiveestablishedindependentperipheralMacromicrovasculardocumentedincludinghighlevelspotentvasoconstrictorsdiabetesvasoconstrictionidentifiedunderlyingsoughtestablishpotentialrelationshipdeterminewhetherreflectiveseverityDESIGN:Singlecentercross-sectionalMETHODS:Sixty-sevenpatientsstratifiedtwogroups:healthycontrolsGroupsmatchedagesexracesmokingstatusOutcomemeasuresincludedserologiesdilatedfundusexamtestinganthropometricparametersthicknessusequestionnairesassesssymptomsdiseasecontinuouspositiveairwaypressureCPAPcomplianceRESULTS:significantdifferencesobservednumberdendriticcellstestnotedsuperiorinferiorregionsdiscperipapillaryregiongreaterproportionparticipantsrequiredsubsequentevaluationcontrolhypopneaindexcuppingCONCLUSIONS:exertrobusteffecthoweverParticipantsglaucomatousfactorsexamineduncontrolledexacerbateprogressionDifferentialeffectsobstructive

Similar Articles

Cited By