Bringing Vibrational Imaging to Chemical Biology with Molecular Probes.

Jiajun Du, Haomin Wang, Lu Wei
Author Information
  1. Jiajun Du: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States. ORCID
  2. Haomin Wang: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
  3. Lu Wei: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States. ORCID

Abstract

As an emerging optical imaging modality, stimulated Raman scattering (SRS) microscopy provides invaluable opportunities for chemical biology studies using its rich chemical information. Through rapid progress over the past decade, the development of Raman probes harnessing the chemical biology toolbox has proven to play a key role in advancing SRS microscopy and expanding biological applications. In this perspective, we first discuss the development of biorthogonal SRS imaging using small tagging of triple bonds or isotopes and highlight their unique advantages for metabolic pathway analysis and microbiology investigations. Potential opportunities for chemical biology studies integrating small tagging with SRS imaging are also proposed. We next summarize the current designs of highly sensitive and super-multiplexed SRS probes, as well as provide future directions and considerations for next-generation functional probe design. These rationally designed SRS probes are envisioned to bridge the gap between SRS microscopy and chemical biology research and should benefit their mutual development.

References

  1. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11226-31 [PMID: 23798434]
  2. Sci Transl Med. 2013 Sep 4;5(201):201ra119 [PMID: 24005159]
  3. Annu Rev Phys Chem. 2007;58:461-88 [PMID: 17105414]
  4. Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13394-13399 [PMID: 29196526]
  5. Nat Microbiol. 2016 Aug 01;1(10):16124 [PMID: 27670110]
  6. Nat Chem. 2014 Jul;6(7):614-22 [PMID: 24950332]
  7. J Phys Chem Lett. 2019 Jul 5;10(13):3563-3570 [PMID: 31185166]
  8. Phys Biol. 2019 Apr 23;16(4):041003 [PMID: 30870829]
  9. Nat Commun. 2019 Oct 18;10(1):4764 [PMID: 31628307]
  10. Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7725-30 [PMID: 26056283]
  11. J Chem Phys. 2020 May 7;152(17):174201 [PMID: 32384848]
  12. Nat Biomed Eng. 2019 May;3(5):402-413 [PMID: 31036888]
  13. Adv Healthc Mater. 2021 Dec;10(24):e2101167 [PMID: 34606177]
  14. Nat Biotechnol. 2022 Mar;40(3):364-373 [PMID: 34608326]
  15. Chem Commun (Camb). 2020 Nov 19;56(92):14463-14466 [PMID: 33147301]
  16. Nat Biotechnol. 2003 Nov;21(11):1369-77 [PMID: 14595365]
  17. Science. 2010 Dec 3;330(6009):1368-70 [PMID: 21127249]
  18. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  19. ACS Cent Sci. 2020 Apr 22;6(4):478-486 [PMID: 32341997]
  20. J Am Chem Soc. 2022 May 18;144(19):8504-8514 [PMID: 35508077]
  21. Nat Protoc. 2020 May;15(5):1585-1611 [PMID: 32235926]
  22. J Am Chem Soc. 2012 Dec 26;134(51):20681-9 [PMID: 23198907]
  23. Angew Chem Int Ed Engl. 2022 Feb 7;61(7):e202113929 [PMID: 34970821]
  24. Nature. 2021 Jun;594(7862):201-206 [PMID: 34108694]
  25. J Biomed Opt. 2016 Jun;21(6):61003 [PMID: 26719944]
  26. Nat Commun. 2017 Oct 11;8(1):865 [PMID: 29021566]
  27. Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9821-5 [PMID: 26207979]
  28. Mol Pharm. 2011 Jun 6;8(3):969-75 [PMID: 21548600]
  29. Nat Commun. 2021 Jul 26;12(1):4518 [PMID: 34312393]
  30. Adv Sci (Weinh). 2021 Feb 08;8(9):2003136 [PMID: 33977045]
  31. Analyst. 2020 Aug 7;145(15):5289-5298 [PMID: 32672252]
  32. Cell Metab. 2014 Mar 4;19(3):393-406 [PMID: 24606897]
  33. J Am Chem Soc. 2020 Feb 26;142(8):3762-3774 [PMID: 31910623]
  34. RSC Chem Biol. 2021 Jul 14;2(5):1415-1429 [PMID: 34704046]
  35. Angew Chem Int Ed Engl. 2021 Mar 29;60(14):7637-7642 [PMID: 33491852]
  36. Chem Commun (Camb). 2018 Jan 7;54(2):152-155 [PMID: 29218356]
  37. J Am Chem Soc. 2014 Jun 4;136(22):8027-33 [PMID: 24849912]
  38. Angew Chem Int Ed Engl. 2021 Sep 27;60(40):21846-21852 [PMID: 34227191]
  39. Curr Opin Biomed Eng. 2017 Dec;4:32-39 [PMID: 29335679]
  40. Nat Methods. 2018 Mar;15(3):194-200 [PMID: 29334378]
  41. Nat Commun. 2019 Feb 15;10(1):762 [PMID: 30770834]
  42. Nat Rev Methods Primers. 2021;1: [PMID: 34585143]
  43. Nat Commun. 2021 Feb 26;12(1):1305 [PMID: 33637723]
  44. Angew Chem Int Ed Engl. 2010 Apr 26;49(19):3310-2 [PMID: 20349485]
  45. Analyst. 2021 Jun 28;146(13):4135-4145 [PMID: 33949430]
  46. Nat Commun. 2020 Jan 3;11(1):81 [PMID: 31900403]
  47. Phys Rev Lett. 2014 Feb 7;112(5):053905 [PMID: 24580595]
  48. Chem Commun (Camb). 2019 Aug 1;55(63):9379-9382 [PMID: 31317975]
  49. Nat Commun. 2018 Aug 6;9(1):2995 [PMID: 30082908]
  50. Adv Sci (Weinh). 2020 Aug 16;7(19):2001452 [PMID: 33042757]
  51. Nat Methods. 2014 Apr;11(4):410-2 [PMID: 24584195]
  52. J Biol Eng. 2019 May 22;13:43 [PMID: 31139251]
  53. Anal Chem. 2020 Oct 6;92(19):13182-13191 [PMID: 32907318]
  54. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  55. Nature. 2016 Jun 15;534(7608):570-4 [PMID: 27309814]
  56. Adv Sci (Weinh). 2022 Jul;9(20):e2200315 [PMID: 35521971]
  57. Acc Chem Res. 2016 Aug 16;49(8):1494-502 [PMID: 27486796]
  58. Nat Commun. 2020 Mar 19;11(1):1450 [PMID: 32193370]
  59. J Cell Sci. 2022 Mar 1;135(5): [PMID: 33975358]
  60. Analyst. 2014 May 21;139(10):2312-7 [PMID: 24555181]
  61. Light Sci Appl. 2018 Oct 24;7:81 [PMID: 30374403]
  62. Bioconjug Chem. 2021 Dec 15;32(12):2457-2479 [PMID: 34846126]
  63. Biomed Opt Express. 2020 Jan 13;11(2):762-774 [PMID: 32133223]
  64. Nature. 2021 Dec;600(7889):444-449 [PMID: 34912086]
  65. Opt Express. 2009 Mar 2;17(5):3651-8 [PMID: 19259205]
  66. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  67. ACS Nano. 2020 Nov 24;14(11):15032-15041 [PMID: 33079538]
  68. iScience. 2020 Mar 27;23(3):100953 [PMID: 32179477]
  69. Sci Rep. 2014 Oct 29;4:6807 [PMID: 25351207]
  70. Angew Chem Int Ed Engl. 2015 Aug 3;54(32):9343-6 [PMID: 26088803]
  71. Nat Commun. 2021 May 24;12(1):3052 [PMID: 34031374]
  72. Anal Chem. 2019 Mar 19;91(6):3784-3789 [PMID: 30758186]
  73. Nat Commun. 2021 May 25;12(1):3089 [PMID: 34035304]
  74. J Phys Chem B. 2013 Apr 25;117(16):4634-40 [PMID: 23256635]
  75. Nat Photonics. 2014;8:627-634 [PMID: 25621002]
  76. Nat Commun. 2020 Sep 24;11(1):4830 [PMID: 32973134]
  77. Sci Rep. 2015 Jan 22;5:7930 [PMID: 25608867]
  78. Nature. 2009 Nov 12;462(7270):200-4 [PMID: 19907490]
  79. Sci Adv. 2018 Nov 16;4(11):eaat7715 [PMID: 30456301]
  80. Chem Commun (Camb). 2017 Jun 6;53(46):6187-6190 [PMID: 28474031]
  81. Chem Rev. 1999 Oct 13;99(10):2957-76 [PMID: 11749507]
  82. J Phys Chem Lett. 2019 Aug 1;10(15):4374-4381 [PMID: 31313926]
  83. Cell Stem Cell. 2017 Mar 2;20(3):303-314.e5 [PMID: 28041894]
  84. J Am Chem Soc. 2020 Dec 9;142(49):20701-20707 [PMID: 33225696]
  85. J Am Chem Soc. 2022 Jan 19;144(2):777-786 [PMID: 34913693]
  86. Nat Mach Intell. 2021 Apr;3:306-315 [PMID: 34676358]
  87. Anal Chem. 2013 Jan 2;85(1):98-106 [PMID: 23198914]
  88. J Phys Chem Lett. 2018 Aug 16;9(16):4679-4685 [PMID: 30067370]
  89. J Chem Phys. 2021 Apr 7;154(13):135102 [PMID: 33832245]
  90. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  91. ACS Chem Biol. 2018 Apr 20;13(4):1013-1020 [PMID: 29512999]
  92. Opt Lett. 2021 May 1;46(9):2176-2179 [PMID: 33929447]
  93. Nat Commun. 2021 Jun 15;12(1):3648 [PMID: 34131146]
  94. Nat Med. 2020 Jan;26(1):52-58 [PMID: 31907460]
  95. J Phys Chem Lett. 2011 May 9;2(11):1248-1253 [PMID: 21731798]
  96. Nat Commun. 2020 Jul 10;11(1):3452 [PMID: 32651381]
  97. J Phys Chem Lett. 2011 Sep 23;2:2598-2609 [PMID: 22003429]
  98. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  99. Annu Rev Biophys Biomol Struct. 1999;28:1-27 [PMID: 10410793]
  100. RSC Adv. 2020 Oct 1;10(59):36119-36123 [PMID: 35517095]
  101. Analyst. 2018 Oct 8;143(20):4844-4848 [PMID: 30246812]
  102. Cell. 2012 Mar 16;148(6):1132-44 [PMID: 22424225]
  103. Org Biomol Chem. 2021 Oct 6;19(38):8232-8236 [PMID: 34528645]
  104. Angew Chem Int Ed Engl. 2014 Jun 2;53(23):5827-31 [PMID: 24753329]
  105. J Phys Chem Lett. 2020 Sep 3;11(17):7083-7089 [PMID: 32786960]
  106. Theranostics. 2019 Feb 14;9(5):1348-1357 [PMID: 30867835]
  107. J Am Chem Soc. 2021 Oct 13;143(40):16370-16376 [PMID: 34582686]
  108. Nature. 2010 Dec 9;468(7325):790-5 [PMID: 21085121]

Grants

  1. DP2 GM140919/NIGMS NIH HHS

MeSH Term

Biology
Microscopy
Molecular Probes
Spectrum Analysis, Raman
Vibration

Chemicals

Molecular Probes

Word Cloud

Created with Highcharts 10.0.0SRSchemicalbiologyimagingmicroscopydevelopmentprobesRamanopportunitiesstudiesusingsmalltaggingemergingopticalmodalitystimulatedscatteringprovidesinvaluablerichinformationrapidprogresspastdecadeharnessingtoolboxprovenplaykeyroleadvancingexpandingbiologicalapplicationsperspectivefirstdiscussbiorthogonaltriplebondsisotopeshighlightuniqueadvantagesmetabolicpathwayanalysismicrobiologyinvestigationsPotentialintegratingalsoproposednextsummarizecurrentdesignshighlysensitivesuper-multiplexedwellprovidefuturedirectionsconsiderationsnext-generationfunctionalprobedesignrationallydesignedenvisionedbridgegapresearchbenefitmutualBringingVibrationalImagingChemicalBiologyMolecularProbes

Similar Articles

Cited By