Enhanced procedures for mosquito identification by MALDI-TOF MS.

Roland Bamou, Monique Melo Costa, Adama Zan Diarra, Ademir Jesus Martins, Philippe Parola, Lionel Almeras
Author Information
  1. Roland Bamou: Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.
  2. Monique Melo Costa: Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.
  3. Adama Zan Diarra: Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.
  4. Ademir Jesus Martins: Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil.
  5. Philippe Parola: Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.
  6. Lionel Almeras: Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France. almeras.lionel@gmail.com.

Abstract

BACKGROUND: In the last decade, an innovative approach has emerged for arthropod identification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Increasing interest in applying the original technique for arthropod identification has led to the development of a variety of procedures for sample preparation and selection of body parts, among others. However, the absence of a consensual strategy hampers direct inter-study comparisons. Moreover, these different procedures are confusing to new users. Establishing optimized procedures and standardized protocols for mosquito identification by MALDI-TOF MS is therefore a necessity, and would notably enable the sharing of reference MS databases. Here, we assess the optimal conditions for mosquito identification using MALDI-TOF MS profiling.
METHODS: Three homogenization methods, two of which were manual and one automatic, were used on three distinct body parts (legs, thorax, head) of two mosquito laboratory strains, Anopheles coluzzii and Aedes aegypti, and the results evaluated. The reproducibility of MS profiles, identification rate with relevant scores and the suitability of procedures for high-throughput analyses were the main criteria for establishing optimized guidelines. Additionally, the consequences of blood-feeding and geographical origin were evaluated using both laboratory strains and field-collected mosquitoes.
RESULTS: Relevant score values for mosquito identification were obtained for all the three body parts assayed using MALDI-TOF MS profiling; however, the thorax and legs were the most suitable specimens, independently of homogenization method or species. Although the manual homogenization methods were associated with a high rate of identification on the three body parts, this homogenization mode is not adaptable to the processing of a large number of samples. Therefore, the automatic homogenization procedure was selected as the reference homogenization method. Blood-feeding status did not hamper the identification of mosquito species, despite the presence of MS peaks from original blood in the MS profiles of the three body parts tested from both species. Finally, a significant improvement in identification scores was obtained for field-collected specimens when MS spectra of species from the same geographical area were added to the database.
CONCLUSION: The results of the current study establish guidelines for the selection of mosquito anatomic parts and modality of sample preparation (e.g. homogenization) for future specimen identification by MALDI-TOF MS profiling. These standardized operational protocols could be used as references for creating an international MS database.

Keywords

References

  1. Future Microbiol. 2016;11(4):549-66 [PMID: 27070074]
  2. Parasitol Res. 2014 Jun;113(6):2375-8 [PMID: 24737398]
  3. Malar J. 2020 Feb 13;19(1):70 [PMID: 32054502]
  4. Med Vet Entomol. 2011 Mar;25(1):32-8 [PMID: 21118284]
  5. Parasit Vectors. 2014 Dec 02;7:544 [PMID: 25442218]
  6. Am J Trop Med Hyg. 1993 Oct;49(4):520-9 [PMID: 8214283]
  7. Malar J. 2016 Feb 13;15:87 [PMID: 26872451]
  8. Ticks Tick Borne Dis. 2012 Apr;3(2):78-89 [PMID: 22487425]
  9. Lancet Planet Health. 2021 Jul;5(7):e404-e414 [PMID: 34245711]
  10. PLoS Negl Trop Dis. 2019 Sep 9;13(9):e0007669 [PMID: 31498786]
  11. Microorganisms. 2021 Jul 20;9(7): [PMID: 34361974]
  12. Malar J. 2017 Jan 3;16(1):5 [PMID: 28049524]
  13. Insects. 2020 May 15;11(5): [PMID: 32429075]
  14. Med Mycol. 2016 Jan;54(1):80-8 [PMID: 26591008]
  15. Insect Biochem Mol Biol. 2018 Feb;93:47-56 [PMID: 29248738]
  16. Viruses. 2021 Apr 27;13(5): [PMID: 33925487]
  17. Parasit Vectors. 2020 Jul 20;13(1):359 [PMID: 32690083]
  18. Future Microbiol. 2021 Mar;16:323-340 [PMID: 33733821]
  19. Trop Med Int Health. 2004 Dec;9(12):1267-73 [PMID: 15598258]
  20. PLoS One. 2019 Oct 17;14(10):e0223735 [PMID: 31622384]
  21. Front Microbiol. 2015 Aug 05;6:791 [PMID: 26300860]
  22. FEMS Microbiol Rev. 2012 Mar;36(2):380-407 [PMID: 22092265]
  23. Malar J. 2021 Jan 9;20(1):33 [PMID: 33422056]
  24. Parasitology. 2019 Apr;146(4):462-471 [PMID: 30269696]
  25. Pest Manag Sci. 2019 Apr;75(4):923-934 [PMID: 30178568]
  26. Nat Microbiol. 2019 May;4(5):854-863 [PMID: 30833735]
  27. Parasit Vectors. 2018 Nov 3;11(1):574 [PMID: 30390691]
  28. Parasitology. 2018 Apr;145(5):677-687 [PMID: 28768561]
  29. Med Vet Entomol. 2017 Sep;31(3):289-298 [PMID: 28426182]
  30. Infect Genet Evol. 2018 Sep;63:410-419 [PMID: 28919552]
  31. Sci Rep. 2015 Dec 09;5:17952 [PMID: 26648001]
  32. Mass Spectrom Rev. 2001 Jul-Aug;20(4):172-94 [PMID: 11835305]
  33. Parasit Vectors. 2018 May 2;11(1):281 [PMID: 29720246]
  34. Parasit Vectors. 2018 Oct 23;11(1):553 [PMID: 30352609]
  35. Am J Trop Med Hyg. 2019 Jan;100(1):47-53 [PMID: 30526738]
  36. PLoS One. 2019 Jan 15;14(1):e0210590 [PMID: 30645604]
  37. Parasit Vectors. 2012 Apr 04;5:69 [PMID: 22475528]
  38. Proteomics. 2016 Dec;16(24):3148-3160 [PMID: 27862981]
  39. PLoS Negl Trop Dis. 2013 Jul 11;7(7):e2305 [PMID: 23875040]
  40. Bioinformatics. 2012 Sep 1;28(17):2270-1 [PMID: 22796955]
  41. PLoS One. 2013;8(2):e57486 [PMID: 23469000]
  42. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9 [PMID: 7881515]
  43. Med Vet Entomol. 2017 Dec;31(4):438-448 [PMID: 28722283]
  44. PLoS Negl Trop Dis. 2016 Jan 15;10(1):e0004351 [PMID: 26771833]
  45. PLoS One. 2020 Aug 20;15(8):e0234098 [PMID: 32817616]
  46. PLoS Negl Trop Dis. 2014 Jul 24;8(7):e2984 [PMID: 25058611]
  47. PLoS One. 2013 Aug 15;8(8):e72380 [PMID: 23977292]
  48. PLoS Negl Trop Dis. 2018 Feb 16;12(2):e0006189 [PMID: 29451890]
  49. Bioinformatics. 2018 Feb 1;34(3):522-523 [PMID: 29028890]
  50. Zootaxa. 2015 Oct 06;4027(4):593-9 [PMID: 26624200]
  51. Comp Immunol Microbiol Infect Dis. 2014 May;37(3):153-7 [PMID: 24878069]
  52. Parasitology. 2018 Aug;145(9):1170-1182 [PMID: 29409547]
  53. Acta Trop. 2019 Jun;194:106-122 [PMID: 30898616]
  54. Parasit Vectors. 2016 Sep 10;9:495 [PMID: 27613238]
  55. Am J Trop Med Hyg. 2015 Apr;92(4):722-9 [PMID: 25732680]
  56. Parasit Vectors. 2014 Jan 14;7:21 [PMID: 24423215]

Grants

  1. PDH-2-NRBC-2-B-2201/Délégation Générale pour l'Armement (DGA, MSProfileR project)

MeSH Term

Aedes
Animals
Anopheles
Reproducibility of Results
Specimen Handling
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

Word Cloud

Created with Highcharts 10.0.0MSidentificationMALDI-TOFmosquitohomogenizationpartsproceduresbodythreespeciesusingprofilingarthropodoriginalsamplepreparationselectionoptimizedstandardizedprotocolsreferencemethodstwomanualautomaticusedlegsthoraxlaboratorystrainsresultsevaluatedprofilesratescoresguidelinesgeographicalfield-collectedobtainedspecimensmethoddatabaseBACKGROUND:lastdecadeinnovativeapproachemergedbasedmatrix-assistedlaserdesorptionionizationtime-of-flightmassspectrometryIncreasinginterestapplyingtechniqueleddevelopmentvarietyamongothersHoweverabsenceconsensualstrategyhampersdirectinter-studycomparisonsMoreoverdifferentconfusingnewusersEstablishingthereforenecessitynotablyenablesharingdatabasesassessoptimalconditionsMETHODS:ThreeonedistinctheadAnophelescoluzziiAedesaegyptireproducibilityrelevantsuitabilityhigh-throughputanalysesmaincriteriaestablishingAdditionallyconsequencesblood-feedingoriginmosquitoesRESULTS:RelevantscorevaluesassayedhoweversuitableindependentlyAlthoughassociatedhighmodeadaptableprocessinglargenumbersamplesThereforeprocedureselectedBlood-feedingstatushamperdespitepresencepeaksbloodtestedFinallysignificantimprovementspectraareaaddedCONCLUSION:currentstudyestablishanatomicmodalityegfuturespecimenoperationalreferencescreatinginternationalEnhancedMosquitoesOptimizationStandardization

Similar Articles

Cited By