A machine-learning approach for long-term prediction of experimental cardiac action potential time series using an autoencoder and echo state networks.

Shahrokh Shahi, Flavio H Fenton, Elizabeth M Cherry
Author Information
  1. Shahrokh Shahi: School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. ORCID
  2. Flavio H Fenton: School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. ORCID
  3. Elizabeth M Cherry: School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. ORCID

Abstract

Computational modeling and experimental/clinical prediction of the complex signals during cardiac arrhythmias have the potential to lead to new approaches for prevention and treatment. Machine-learning (ML) and deep-learning approaches can be used for time-series forecasting and have recently been applied to cardiac electrophysiology. While the high spatiotemporal nonlinearity of cardiac electrical dynamics has hindered application of these approaches, the fact that cardiac voltage time series are not random suggests that reliable and efficient ML methods have the potential to predict future action potentials. This work introduces and evaluates an integrated architecture in which a long short-term memory autoencoder (AE) is integrated into the echo state network (ESN) framework. In this approach, the AE learns a compressed representation of the input nonlinear time series. Then, the trained encoder serves as a feature-extraction component, feeding the learned features into the recurrent ESN reservoir. The proposed AE-ESN approach is evaluated using synthetic and experimental voltage time series from cardiac cells, which exhibit nonlinear and chaotic behavior. Compared to the baseline and physics-informed ESN approaches, the AE-ESN yields mean absolute errors in predicted voltage 6-14 times smaller when forecasting approximately 20 future action potentials for the datasets considered. The AE-ESN also demonstrates less sensitivity to algorithmic parameter settings. Furthermore, the representation provided by the feature-extraction component removes the requirement in previous work for explicitly introducing external stimulus currents, which may not be easily extracted from real-world datasets, as additional time series, thereby making the AE-ESN easier to apply to clinical data.

References

  1. Ann Biomed Eng. 2018 Apr;46(4):555-566 [PMID: 29356998]
  2. Nature. 1998 Mar 5;392(6671):75-8 [PMID: 9510249]
  3. Nature. 2018 Mar 29;555(7698):667-672 [PMID: 29466325]
  4. Phys Rev Lett. 2006 Mar 17;96(10):104101 [PMID: 16605736]
  5. Neural Netw. 2021 Jan;133:40-56 [PMID: 33125917]
  6. J Cardiovasc Electrophysiol. 2001 Feb;12(2):196-206 [PMID: 11232619]
  7. Science. 2006 Jul 28;313(5786):504-7 [PMID: 16873662]
  8. Int J Neural Syst. 2021 Mar;31(3):2130001 [PMID: 33588711]
  9. Neural Netw. 2007 Apr;20(3):335-52 [PMID: 17517495]
  10. Front Physiol. 2017 Oct 20;8:819 [PMID: 29104543]
  11. Chaos. 2018 Apr;28(4):041101 [PMID: 31906641]
  12. Mach Learn Appl. 2022 Jun 15;8: [PMID: 35755176]
  13. Chaos. 1998 Dec;8(4):879 [PMID: 12779795]
  14. Am J Physiol Heart Circ Physiol. 2012 Jun 15;302(12):H2451-63 [PMID: 22467299]
  15. Nature. 1998 Mar 5;392(6671):78-82 [PMID: 9510250]
  16. Neural Comput. 2006 Jul;18(7):1527-54 [PMID: 16764513]
  17. Chaos. 2021 Jan;31(1):013108 [PMID: 33754755]
  18. J Comput Biol. 2003;10(3-4):341-56 [PMID: 12935332]
  19. Front Physiol. 2021 Sep 27;12:734178 [PMID: 34646159]
  20. Front Physiol. 2019 Sep 20;10:1193 [PMID: 31616311]
  21. Chaos. 1994 Sep;4(3):461-472 [PMID: 12780121]
  22. Chaos. 2002 Sep;12(3):852-892 [PMID: 12779613]
  23. Nat Commun. 2021 Sep 21;12(1):5564 [PMID: 34548491]
  24. Phys Rev Lett. 2017 Apr 21;118(16):168101 [PMID: 28474934]
  25. J Physiol. 1977 Jun;268(1):177-210 [PMID: 874889]
  26. Front Physiol. 2013 Apr 19;4:71 [PMID: 23637684]
  27. J Appl Physiol. 1968 Aug;25(2):191-6 [PMID: 5666097]
  28. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041917 [PMID: 17995036]
  29. Heart Rhythm. 2007 Aug;4(8):1057-68 [PMID: 17675081]
  30. Circulation. 1999 Mar 16;99(10):1385-94 [PMID: 10077525]
  31. Front Physiol. 2020 May 26;11:464 [PMID: 32528304]
  32. Chaos. 2014 Sep;24(3):033124 [PMID: 25273204]
  33. Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2332-41 [PMID: 14751863]

Grants

  1. R01 HL143450/NHLBI NIH HHS

MeSH Term

Action Potentials
Computer Simulation
Machine Learning
Neural Networks, Computer
Time Factors

Word Cloud

Created with Highcharts 10.0.0cardiactimeseriesapproachesAE-ESNpotentialvoltageactionESNapproachpredictionMLforecastingfuturepotentialsworkintegratedautoencoderAEechostaterepresentationnonlinearfeature-extractioncomponentusingexperimentaldatasetsComputationalmodelingexperimental/clinicalcomplexsignalsarrhythmiasleadnewpreventiontreatmentMachine-learningdeep-learningcanusedtime-seriesrecentlyappliedelectrophysiologyhighspatiotemporalnonlinearityelectricaldynamicshinderedapplicationfactrandomsuggestsreliableefficientmethodspredictintroducesevaluatesarchitecturelongshort-termmemorynetworkframeworklearnscompressedinputtrainedencoderservesfeedinglearnedfeaturesrecurrentreservoirproposedevaluatedsyntheticcellsexhibitchaoticbehaviorComparedbaselinephysics-informedyieldsmeanabsoluteerrorspredicted6-14timessmallerapproximately20consideredalsodemonstrateslesssensitivityalgorithmicparametersettingsFurthermoreprovidedremovesrequirementpreviousexplicitlyintroducingexternalstimuluscurrentsmayeasilyextractedreal-worldadditionaltherebymakingeasierapplyclinicaldatamachine-learninglong-termnetworks

Similar Articles

Cited By