A Universal Gene Expression System for Novel Yeast Species.

Dominik Mojzita, Anssi Rantasalo, Marja Ilmén
Author Information
  1. Dominik Mojzita: VTT Technical Research Centre of Finland Ltd, Espoo, Finland. dominik.mojzita@vtt.fi.
  2. Anssi Rantasalo: EniferBio Oy, Espoo, Finland.
  3. Marja Ilmén: VTT Technical Research Centre of Finland Ltd, Espoo, Finland.

Abstract

The current progress in sequencing of genomes and characterization of new species provides an increasing list of yeasts that show interesting physiological properties; however, the lack of expression tools for these new hosts is prohibiting their broader use in research or industry. Recently, we developed a universal expression system (SES) functional in broad spectrum of fungal species, which represent a solution for feasible gene expression control and genetic manipulation in these novel hosts. Here, we describe three example approaches for DNA transformation and high-level heterologous gene expression, using the SES system, in three yeast species, where minimal knowledge or prior experience in genetic modifications is available.

Keywords

References

  1. Mojzita D, Rantasalo A, Jantti J (2019) Gene expression engineering in fungi. Curr Opin Biotechnol 59:141–149. https://doi.org/10.1016/j.copbio.2019.04.007 [DOI: 10.1016/j.copbio.2019.04.007]
  2. Hubmann G, Thevelein J, Nevoigt E (2014) Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. In: Mapelli V (ed) Yeast metabolic engineering, vol 1152. Methods in molecular biology. Springer, New York, pp 17–42. https://doi.org/10.1007/978-1-4939-0563-8_2 [DOI: 10.1007/978-1-4939-0563-8_2]
  3. Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnol 30(4):385–404. https://doi.org/10.1016/j.nbt.2012.11.010 [DOI: 10.1016/j.nbt.2012.11.010]
  4. Rantasalo A, Landowski CP, Kuivanen J et al (2018) A universal gene expression system for fungi. Nucleic Acids Res 46(18):e111. https://doi.org/10.1093/nar/gky558 [DOI: 10.1093/nar/gky558]
  5. Steels H, James SA, Roberts IN et al (1999) Zygosaccharomyces lentus: a significant new osmophilic, preservative-resistant spoilage yeast, capable of growth at low temperature. J Appl Microbiol 87(4):520–527 [DOI: 10.1046/j.1365-2672.1999.00844.x]
  6. Vega-Alvarado L, Gomez-Angulo J, Escalante-Garcia Z et al (2015) High-quality draft genome sequence of Candida apicola NRRL Y-50540. Genome Announc 3(3). https://doi.org/10.1128/genomeA.00437-15
  7. de Hoog GS, Smith MT (1986) Key to the species of Hyphozyma (yeast-like Hyphomycetes) and description of H. roseonigra sp. nov. Antonie Van Leeuwenhoek 52(1):39–44 [DOI: 10.1007/BF00402685]
  8. Wang X, Zhang X, Yao Q et al (2019) Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol. Brazilian J Microbiol: [publication of the Brazilian Society for Microbiology] 50(1):79–84. https://doi.org/10.1007/s42770-019-00040-2 [DOI: 10.1007/s42770-019-00040-2]
  9. Palmer CN, Axen E, Hughes V et al (1998) The repressor protein, Bm3R1, mediates an adaptive response to toxic fatty acids in bacillus megaterium. J Biol Chem 273(29):18109–18116 [DOI: 10.1074/jbc.273.29.18109]
  10. Sadowski I, Ma J, Triezenberg S, Ptashne M (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335(6190):563–564. https://doi.org/10.1038/335563a0 [DOI: 10.1038/335563a0]
  11. IDT – Integrated DNA Technologies, Inc. (online resource). https://eu.idtdna.com/pages/support/guides-and-protocols
  12. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96 [DOI: 10.1016/S0076-6879(02)50957-5]
  13. Koivuranta K, Castillo S, Jouhten P et al (2018) Enhanced triacylglycerol production with genetically modified Trichosporon oleaginosus. Front Microbiol 9:1337. https://doi.org/10.3389/fmicb.2018.01337 [DOI: 10.3389/fmicb.2018.01337]
  14. Benatuil L, Perez JM et al (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Design Select: PEDS 23(4):155–159. https://doi.org/10.1093/protein/gzq002 [DOI: 10.1093/protein/gzq002]
  15. Rantasalo A, Vitikainen M, Paasikallio T et al (2019) Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Sci Rep 9(1):5032. https://doi.org/10.1038/s41598-019-41573-8 [DOI: 10.1038/s41598-019-41573-8]
  16. Lalithakumari D (2000) Isolation of fungal protoplasts of filamentous fungi. In: fungal protoplast: a biotechnological tool. CRC Press, Boca Raton, pp 1–54

MeSH Term

Gene Editing
Gene Expression
Industry
Phylogeny

Word Cloud

Created with Highcharts 10.0.0expressionspeciessystemSESgenenewtoolshostsgeneticthreeyeastNovelcurrentprogresssequencinggenomescharacterizationprovidesincreasinglistyeastsshowinterestingphysiologicalpropertieshoweverlackprohibitingbroaderuseresearchindustryRecentlydevelopeduniversalfunctionalbroadspectrumfungalrepresentsolutionfeasiblecontrolmanipulationnoveldescribeexampleapproachesDNAtransformationhigh-levelheterologoususingminimalknowledgepriorexperiencemodificationsavailableUniversalGeneExpressionSystemYeastSpeciesGeneticHeterologousMetabolicengineeringProteinproductionSynthetic

Similar Articles

Cited By

No available data.