How Short Is Long Enough? Modeling Temporal Aspects of Human Mobility Behavior Using Mobile Phone Data.

Eun-Hye Yoo
Author Information
  1. Eun-Hye Yoo: Department of Geography, State University of New York at Buffalo.

Abstract

Time-location data collected from location-sensing technologies have the potential to advance our understanding of human mobility. Existing human activity studies tend to ignore a critical issue in data collection-the time period for which the activity data will be collected. Our study investigated this significant gap in the literature on temporal aspects of human mobility behavior-how many days constitute a period long enough to capture individuals' highly organized activity episodes and how they vary among individuals with heterogeneous demographic and social-economic characteristics. To determine a minimum number of days to capture individuals' highly organized activity episodes in activity space, we examined a distribution of Kullback-Leibler divergence indexes. To evaluate the differences in the minimal number of observation days per subgroup whose demographic and economic characteristics are heterogenous, we used a Bayesian profile regression model. Our study showed that the estimated minimum number of days required to capture routine activity patterns was 13.5 days with a standard deviation of 6.64. We found that participant's age, employment status, size of household, and accessibility to downtown, food, and physical activity, as well as economic status of residential environment, are important factors that affect temporal aspects of mobility behavior.

Keywords

References

  1. J Expo Sci Environ Epidemiol. 2016 Jun;26(4):356-64 [PMID: 25425137]
  2. Science. 2012 Oct 12;338(6104):267-70 [PMID: 23066082]
  3. Am J Prev Med. 2011 Nov;41(5):508-15 [PMID: 22011423]
  4. Nat Hum Behav. 2018 Jul;2(7):485-491 [PMID: 31097800]
  5. Biostatistics. 2010 Jul;11(3):484-98 [PMID: 20350957]
  6. Health Place. 2013 May;21:46-51 [PMID: 23425661]
  7. PLoS One. 2017 Feb 15;12(2):e0171686 [PMID: 28199347]
  8. Int J Geogr Inf Sci. 2018;32(7):1485-1504 [PMID: 31379465]
  9. Nature. 2008 Jun 5;453(7196):779-82 [PMID: 18528393]
  10. PLoS One. 2015 Jul 20;10(7):e0133630 [PMID: 26192322]
  11. Drug Alcohol Depend. 2014 Jan 1;134:22-29 [PMID: 24332365]
  12. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5370-8 [PMID: 27573826]
  13. Drug Alcohol Depend. 2016 Aug 01;165:288-92 [PMID: 27372218]
  14. J Stat Softw. 2015 Mar 20;64(7):1-30 [PMID: 27307779]
  15. Environ Health Perspect. 2011 Jan;119(1):84-91 [PMID: 20920953]
  16. Nat Commun. 2015 Sep 08;6:8166 [PMID: 26349016]
  17. Health Place. 2012 Jan;18(1):46-54 [PMID: 22243906]
  18. Spat Spatiotemporal Epidemiol. 2016 Aug;18:63-73 [PMID: 27494961]
  19. Stat Comput. 2015;25(5):1023-1037 [PMID: 26321800]
  20. Science. 2010 Feb 19;327(5968):1018-21 [PMID: 20167789]

Grants

  1. R01 GM108731/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0activitydaysdatahumanmobilitytemporalcapturenumbercollectedperiodstudyaspectsindividuals'highlyorganizedepisodesdemographiccharacteristicsminimumdivergenceeconomicBayesianprofileregressionstatusTime-locationlocation-sensingtechnologiespotentialadvanceunderstandingExistingstudiestendignorecriticalissuecollection-thetimewillinvestigatedsignificantgapliteraturebehavior-howmanyconstitutelongenoughvaryamongindividualsheterogeneoussocial-economicdeterminespaceexamineddistributionKullback-Leiblerindexesevaluatedifferencesminimalobservationpersubgroupwhoseheterogenoususedmodelshowedestimatedrequiredroutinepatterns135standarddeviation664foundparticipant'sageemploymentsizehouseholdaccessibilitydowntownfoodphysicalwellresidentialenvironmentimportantfactorsaffectbehaviorShortLongEnough?ModelingTemporalAspectsHumanMobilityBehaviorUsingMobilePhoneDataKullback���Leiblermobilephoneregularity

Similar Articles

Cited By