Irisin, Exercise, and COVID-19.

Hugo Rodrigues Alves, Guilherme Schittine Bezerra Lomba, Cassiano Felippe Gonçalves-de-Albuquerque, Patricia Burth
Author Information
  1. Hugo Rodrigues Alves: Department of Cell and Molecular Biology, Fluminense Federal University, Niterói, Brazil.
  2. Guilherme Schittine Bezerra Lomba: Department of Cell and Molecular Biology, Fluminense Federal University, Niterói, Brazil.
  3. Cassiano Felippe Gonçalves-de-Albuquerque: Laboratory of Immunopharmacology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
  4. Patricia Burth: Department of Cell and Molecular Biology, Fluminense Federal University, Niterói, Brazil.

Abstract

Muscle and adipose tissue produce irisin during exercise. Irisin is thermogenic adipomyokine, improves glucose and lipid metabolism, and ameliorates the effects of obesity-driven inflammation, metabolic syndrome, and diabetes. In addition, exercise-induced irisin activates anti-inflammatory pathways and may play an essential role in improving the outcomes of inflammatory conditions, such as coronavirus disease (COVID-19). COVID-19 infection can activate different intracellular receptors and modulate various pathways during the course of the disease. The cytokine release storm (CRS) produced is significant because it promotes the context for systemic inflammation, which increases the risk of mortality in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). In addition, viral infection and the resulting organ damage may stimulate the mitogen-activated protein kinase(MAPK) and toll-like receptor 4 (TLR4)/toll interleukin receptor (TIR)-domain-containing adaptor (MyD88) pathways while negatively modulating the AMP-activated protein kinase (AMPK) pathway, leading to increased inflammatory cytokine production. Exercise-induced irisin may counteract this inflammatory modulation by decreasing cytokine production. Consequently, increased irisin levels, as found in healthy patients, may favor a better prognosis in patients with SARS-CoV2. This review aims to explore the molecular mechanisms underlying the anti-inflammatory properties of irisin in mitigating CRS and preventing severe outcomes due to infection with SARS-CoV2.

Keywords

References

  1. PLoS One. 2016 Jun 29;11(6):e0158038 [PMID: 27355581]
  2. Mediators Inflamm. 2014;2014:479395 [PMID: 25294957]
  3. Med Sci Sports Exerc. 2004 Nov;36(11):1876-83 [PMID: 15514501]
  4. Nat Rev Endocrinol. 2017 Jun;13(6):324-337 [PMID: 28211512]
  5. Exp Mol Med. 2016 Jul 15;48(7):e245 [PMID: 27416781]
  6. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  7. Metabolism. 2018 Jun;83:31-41 [PMID: 29374559]
  8. Sports Med Open. 2017 Nov 28;3(1):42 [PMID: 29185059]
  9. Immunology. 2018 Dec;155(4):407-417 [PMID: 30229891]
  10. JAMA. 2020 Aug 25;324(8):782-793 [PMID: 32648899]
  11. J Cachexia Sarcopenia Muscle. 2010 Dec;1(2):129-133 [PMID: 21475695]
  12. Nature. 2012 Jan 11;481(7382):463-8 [PMID: 22237023]
  13. Pol Arch Intern Med. 2020 Apr 30;130(4):304-309 [PMID: 32231171]
  14. Int J Environ Res Public Health. 2021 Mar 03;18(5): [PMID: 33802329]
  15. Int J Mol Sci. 2021 Jan 15;22(2): [PMID: 33467433]
  16. Int J Biochem Cell Biol. 2016 Sep;78:237-247 [PMID: 27452313]
  17. Microb Pathog. 2021 Jan;150:104673 [PMID: 33278517]
  18. FASEB J. 2006 Jan;20(1):190-2 [PMID: 16267123]
  19. Cell Physiol Biochem. 2018;50(4):1574-1584 [PMID: 30359971]
  20. Cells. 2021 May 06;10(5): [PMID: 34066434]
  21. BMC Cardiovasc Disord. 2021 Sep 16;21(1):440 [PMID: 34530722]
  22. Biochem J. 2017 Sep 7;474(18):3167-3177 [PMID: 28733331]
  23. Scand J Med Sci Sports. 2018 Jan;28(1):16-28 [PMID: 28453881]
  24. Eur J Clin Invest. 2017 Aug;47(8):600-611 [PMID: 28722106]
  25. Cell Biosci. 2020 Mar 30;10:51 [PMID: 32257109]
  26. Cell. 2018 Dec 13;175(7):1756-1768.e17 [PMID: 30550785]
  27. Nat Biotechnol. 2021 Jun;39(6):705-716 [PMID: 33361824]
  28. Cytokine Growth Factor Rev. 2021 Apr;58:102-110 [PMID: 32988728]
  29. Sports Med. 2022 Jun;52(6):1273-1294 [PMID: 34878641]
  30. Sci Rep. 2021 Jun 16;11(1):12703 [PMID: 34135459]
  31. Int J Mol Sci. 2017 Mar 25;18(4): [PMID: 28346354]
  32. mBio. 2015 May 26;6(3):e00638-15 [PMID: 26015500]
  33. Sci Rep. 2017 Feb 27;7:43296 [PMID: 28240298]
  34. Nat Rev Microbiol. 2021 Mar;19(3):155-170 [PMID: 33116300]
  35. J Appl Physiol (1985). 2007 Jul;103(1):388-95 [PMID: 17303713]
  36. J Am Coll Cardiol. 2015 Feb 10;65(5):411-9 [PMID: 25660917]
  37. Front Immunol. 2014 Sep 25;5:461 [PMID: 25309543]
  38. Cell Res. 2021 Jul;31(7):818-820 [PMID: 33742149]
  39. Int J Environ Res Public Health. 2020 Nov 17;17(22): [PMID: 33212762]
  40. Yonsei Med J. 2011 May;52(3):379-92 [PMID: 21488180]
  41. Biochem Biophys Res Commun. 2017 May 27;487(2):194-200 [PMID: 28396150]
  42. Mediators Inflamm. 2021 Jan 14;2021:8874339 [PMID: 33505220]
  43. Pharmacol Res. 2017 Jun;120:88-96 [PMID: 28330785]
  44. Curr Neurovasc Res. 2020;17(3):332-337 [PMID: 32334502]
  45. Nat Med. 2021 Jan;27(1):28-33 [PMID: 33442016]
  46. Immunol Rev. 2018 Jan;281(1):179-190 [PMID: 29247987]
  47. N Engl J Med. 2020 Dec 3;383(23):2255-2273 [PMID: 33264547]
  48. J Cell Mol Med. 2020 Jan;24(1):996-1009 [PMID: 31701659]
  49. Front Pharmacol. 2019 May 28;10:548 [PMID: 31191305]
  50. Anat Histol Embryol. 2018 Oct;47(5):405-409 [PMID: 29862553]
  51. J Appl Physiol (1985). 2003 Nov;95(5):1833-42 [PMID: 12832426]
  52. J Appl Physiol (1985). 2012 Jun;112(12):2011-8 [PMID: 22461445]
  53. Am J Physiol Endocrinol Metab. 2010 Feb;298(2):E257-69 [PMID: 19903866]
  54. J Pathol. 2004 Jun;203(2):631-7 [PMID: 15141377]
  55. Obes Facts. 2020;13(3):415-431 [PMID: 32615574]
  56. Front Immunol. 2021 Aug 12;12:720192 [PMID: 34456928]
  57. JCI Insight. 2020 Jul 9;5(13): [PMID: 32516137]
  58. Nutrients. 2018 Mar 30;10(4): [PMID: 29601492]
  59. Antioxidants (Basel). 2021 Mar 30;10(4): [PMID: 33808211]
  60. Metabolism. 2012 Dec;61(12):1725-38 [PMID: 23018146]
  61. Appl Physiol Nutr Metab. 2012 Feb;37(1):80-7 [PMID: 22220922]
  62. Cell Res. 2005 Jan;15(1):11-8 [PMID: 15686620]
  63. Sci Transl Med. 2017 Nov 29;9(418): [PMID: 29187642]
  64. Biochem Biophys Res Commun. 2019 Nov 26;520(1):73-78 [PMID: 31582215]
  65. Clin Chim Acta. 2019 Aug;495:422-428 [PMID: 31082361]
  66. J Physiol. 2003 Mar 15;547(Pt 3):977-87 [PMID: 12562918]
  67. Cerebrovasc Dis. 2020;49(4):346-354 [PMID: 32756048]
  68. Front Pharmacol. 2020 Jul 29;11:1169 [PMID: 32848776]
  69. Front Immunol. 2021 Jul 14;12:693579 [PMID: 34335604]
  70. J Genet Eng Biotechnol. 2018 Dec;16(2):459-466 [PMID: 30733760]
  71. Antioxid Redox Signal. 2021 Jul 10;35(2):139-142 [PMID: 32524832]
  72. Scand J Immunol. 2021 Apr;93(4):e12998 [PMID: 33190302]
  73. Mol Endocrinol. 2016 May;30(5):533-42 [PMID: 27007446]
  74. Front Immunol. 2020 Jun 16;11:1441 [PMID: 32612615]
  75. Front Immunol. 2020 Mar 19;11:409 [PMID: 32265910]
  76. Clin Med (Lond). 2020 Jul;20(4):e109-e113 [PMID: 32571783]
  77. Nat Cell Biol. 2011 Sep 02;13(9):1016-23 [PMID: 21892142]
  78. Front Neurosci. 2019 Oct 24;13:1138 [PMID: 31708733]
  79. Cell Metab. 2013 Nov 5;18(5):649-59 [PMID: 24120943]
  80. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  81. Int J Mol Sci. 2020 Jun 24;21(12): [PMID: 32599864]
  82. J Cardiovasc Pharmacol. 2021 Nov 1;78(5):e648-e655 [PMID: 34321401]
  83. J Biol Chem. 2015 Mar 20;290(12):7671-84 [PMID: 25648888]
  84. J Biol Chem. 2005 May 20;280(20):19587-93 [PMID: 15767263]
  85. Nat Rev Endocrinol. 2019 Feb;15(2):63 [PMID: 30602738]
  86. Nature. 2021 Dec;600(7889):408-418 [PMID: 34880490]
  87. J Allergy Clin Immunol. 2020 Oct;146(4):694-705 [PMID: 32771559]
  88. J Mol Cell Cardiol. 2020 Jul;144:63-65 [PMID: 32422320]
  89. Biochimie. 2019 Mar;158:111-116 [PMID: 30611879]
  90. Med Hypotheses. 2020 Oct;143:110197 [PMID: 33017906]
  91. Endocrine. 2018 Feb;59(2):260-274 [PMID: 29170905]
  92. Clin Sci (Lond). 2019 Mar 1;133(5):611-627 [PMID: 30782608]
  93. Diabetes. 2014 Feb;63(2):514-25 [PMID: 24150604]
  94. Best Pract Res Clin Rheumatol. 2020 Apr;34(2):101504 [PMID: 32249021]
  95. Front Med. 2020 Apr;14(2):185-192 [PMID: 32170560]
  96. Front Immunol. 2021 Feb 05;12:587146 [PMID: 33613573]
  97. Biotech Histochem. 2017;92(4):245-251 [PMID: 28409694]
  98. J Infect Public Health. 2020 Dec;13(12):1833-1839 [PMID: 32788073]
  99. J Cell Mol Med. 2021 Sep;25(17):8522-8536 [PMID: 34331512]
  100. J Biol Chem. 2013 Nov 22;288(47):33738-33744 [PMID: 24114836]
  101. F1000Prime Rep. 2014 Nov 04;6:97 [PMID: 25580251]
  102. Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H1027-H1038 [PMID: 30793936]
  103. Front Immunol. 2021 Jul 02;12:705080 [PMID: 34282358]
  104. Theranostics. 2021 Jan 1;11(1):316-329 [PMID: 33391477]
  105. Cells. 2021 Nov 25;10(12): [PMID: 34943814]
  106. Clin Sci (Lond). 2015 Nov;129(10):839-50 [PMID: 26201094]
  107. J Sci Med Sport. 2021 Sep;24(9):913-918 [PMID: 34090826]
  108. Biomed Pharmacother. 2021 May;137:111334 [PMID: 33556874]
  109. Front Physiol. 2021 Oct 26;12:731594 [PMID: 34764879]
  110. Environ Res. 2021 Sep;200:111785 [PMID: 34329631]
  111. PLoS One. 2013 Apr 11;8(4):e60563 [PMID: 23593248]
  112. J Biomed Sci. 2021 Jan 12;28(1):9 [PMID: 33435929]
  113. Mol Cell Endocrinol. 2020 Sep 15;515:110917 [PMID: 32593740]
  114. FEMS Microbiol Rev. 2016 Jul;40(4):480-93 [PMID: 27075488]
  115. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]

MeSH Term

Anti-Inflammatory Agents
COVID-19
Cytokines
Exercise
Fibronectins
Humans
Inflammation
RNA, Viral
SARS-CoV-2

Chemicals

Anti-Inflammatory Agents
Cytokines
FNDC5 protein, human
Fibronectins
RNA, Viral

Word Cloud

Created with Highcharts 10.0.0irisinmayCOVID-19inflammationpathwaysinflammatoryinfectioncytokinepatientsSARS-CoV2exerciseIrisinadipomyokinesyndromeadditionanti-inflammatoryoutcomescoronavirusdiseaseCRSsevereproteinkinasereceptorincreasedproductionMuscleadiposetissueproducethermogenicimprovesglucoselipidmetabolismameliorateseffectsobesity-drivenmetabolicdiabetesexercise-inducedactivatesplayessentialroleimprovingconditionscanactivatedifferentintracellularreceptorsmodulatevariouscoursereleasestormproducedsignificantpromotescontextsystemicincreasesriskmortalityacuterespiratory2viralresultingorgandamagestimulatemitogen-activatedMAPKtoll-like4TLR4/tollinterleukinTIR-domain-containingadaptorMyD88negativelymodulatingAMP-activatedAMPKpathwayleadingExercise-inducedcounteractmodulationdecreasingConsequentlylevelsfoundhealthyfavorbetterprognosisreviewaimsexploremolecularmechanismsunderlyingpropertiesmitigatingpreventingdueExercise

Similar Articles

Cited By