Interpretable Machine Learning Models to Predict the Resistance of Breast Cancer Patients to Doxorubicin from Their microRNA Profiles.

Adeolu Z Ogunleye, Chayanit Piyawajanusorn, Anthony Gonçalves, Ghita Ghislat, Pedro J Ballester
Author Information
  1. Adeolu Z Ogunleye: Cancer Research Center of Marseille (CRCM), INSERM U1068, Marseille, F-13009, France.
  2. Chayanit Piyawajanusorn: Cancer Research Center of Marseille (CRCM), INSERM U1068, Marseille, F-13009, France.
  3. Anthony Gonçalves: Cancer Research Center of Marseille (CRCM), INSERM U1068, Marseille, F-13009, France.
  4. Ghita Ghislat: Cancer Research Center of Marseille (CRCM), INSERM U1068, Marseille, F-13009, France.
  5. Pedro J Ballester: Cancer Research Center of Marseille (CRCM), INSERM U1068, Marseille, F-13009, France. ORCID

Abstract

Doxorubicin is a common treatment for breast cancer. However, not all patients respond to this drug, which sometimes causes life-threatening side effects. Accurately anticipating doxorubicin-resistant patients would therefore permit to spare them this risk while considering alternative treatments without delay. Stratifying patients based on molecular markers in their pretreatment tumors is a promising approach to advance toward this ambitious goal, but single-gene gene markers such as HER2 expression have not shown to be sufficiently predictive. The recent availability of matched doxorubicin-response and diverse molecular profiles across breast cancer patients permits now analysis at a much larger scale. 16 machine learning algorithms and 8 molecular profiles are systematically evaluated on the same cohort of patients. Only 2 of the 128 resulting models are substantially predictive, showing that they can be easily missed by a standard-scale analysis. The best model is classification and regression tree (CART) nonlinearly combining 4 selected miRNA isoforms to predict doxorubicin response (median Matthew correlation coefficient (MCC) and area under the curve (AUC) of 0.56 and 0.80, respectively). By contrast, HER2 expression is significantly less predictive (median MCC and AUC of 0.14 and 0.57, respectively). As the predictive accuracy of this CART model increases with larger training sets, its update with future data should result in even better accuracy.

Keywords

References

  1. J Pathol. 2009 Oct;219(2):214-21 [PMID: 19593777]
  2. J Natl Cancer Inst. 2008 Jan 2;100(1):14-20 [PMID: 18159072]
  3. Front Genet. 2020 Mar 31;11:278 [PMID: 32296462]
  4. JAMA. 2016 Aug 2;316(5):533-4 [PMID: 27483067]
  5. Nucleic Acids Res. 2019 Jan 8;47(D1):D941-D947 [PMID: 30371878]
  6. Sci Rep. 2019 Oct 23;9(1):15222 [PMID: 31645597]
  7. PLoS One. 2013 Apr 30;8(4):e61318 [PMID: 23646105]
  8. Cancer Res. 2018 May 1;78(9):2407-2418 [PMID: 29483097]
  9. Bioinformatics. 2016 Oct 1;32(19):2891-5 [PMID: 27354694]
  10. Cancer Epidemiol Biomarkers Prev. 2007 Mar;16(3):572-6 [PMID: 17372254]
  11. Oncotarget. 2017 Sep 15;8(57):97025-97040 [PMID: 29228590]
  12. Dev Biol. 2007 Feb 1;302(1):1-12 [PMID: 16989803]
  13. Ann Oncol. 2017 Oct 01;28(10):2595-2605 [PMID: 28945830]
  14. J Pharm Pharmacol. 2013 Feb;65(2):157-70 [PMID: 23278683]
  15. Nat Rev Cancer. 2018 Nov;18(11):696-705 [PMID: 30293088]
  16. Br J Cancer. 2014 Apr 29;110(9):2291-9 [PMID: 24595006]
  17. J Intern Med. 2015 Feb;277(2):201-217 [PMID: 25338550]
  18. Breast Cancer Res Treat. 2012 Nov;136(2):331-45 [PMID: 23073759]
  19. Nat Commun. 2015 Feb 27;6:6169 [PMID: 25721094]
  20. PLoS Comput Biol. 2007 Jun;3(6):e116 [PMID: 17604446]
  21. Sci Rep. 2020 Feb 18;10(1):2849 [PMID: 32071383]
  22. Biomark Med. 2015;9(11):1153-76 [PMID: 26501795]
  23. Patterns (N Y). 2020 Oct 9;1(7):100115 [PMID: 33073257]
  24. BMC Genomics. 2020 Jan 2;21(1):6 [PMID: 31898477]
  25. J Transl Med. 2019 Mar 20;17(1):96 [PMID: 30894200]
  26. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  27. Nucleic Acids Res. 2017 Jul 3;45(W1):W130-W137 [PMID: 28472511]
  28. Clin Cancer Res. 2021 Jan 1;27(1):131-140 [PMID: 33208341]
  29. Cell. 2008 Mar 7;132(5):875-86 [PMID: 18329372]
  30. Front Mol Biosci. 2020 Mar 25;7:34 [PMID: 32269999]
  31. CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90 [PMID: 21296855]
  32. BMC Cancer. 2019 Aug 22;19(1):826 [PMID: 31438886]
  33. Dis Markers. 2019 Dec 30;2019:3815952 [PMID: 31976020]
  34. BMC Med Genomics. 2018 Feb 06;11(1):10 [PMID: 29409485]
  35. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34368843]
  36. Biochem Soc Trans. 2008 Dec;36(Pt 6):1224-31 [PMID: 19021530]
  37. J Zhejiang Univ Sci B. 2008 Jan;9(1):5-9 [PMID: 18196606]
  38. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34655289]
  39. Front Genet. 2014 Feb 18;5:23 [PMID: 24600468]
  40. Clin Epigenetics. 2019 Feb 11;11(1):25 [PMID: 30744689]
  41. Nat Cancer. 2020 Feb;1(2):235-248 [PMID: 32613204]
  42. Methods Protoc. 2020 Dec 24;4(1): [PMID: 33374478]
  43. Bioinformatics. 2021 Aug 4;37(Supplement_1):i76-i83 [PMID: 34000002]
  44. J Cell Physiol. 2018 Aug;233(8):5574-5588 [PMID: 29521426]
  45. Ann Oncol. 2002 Feb;13(2):197-207 [PMID: 11885995]
  46. Bioinformatics. 2017 Jul 15;33(14):i359-i368 [PMID: 28881998]
  47. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72 [PMID: 16381955]
  48. Genome Res. 2017 Oct;27(10):1743-1751 [PMID: 28847918]
  49. Arq Gastroenterol. 2012 Dec;49(4):266-72 [PMID: 23329221]
  50. Clin Cancer Res. 2005 Oct 15;11(20):7434-43 [PMID: 16243817]
  51. Gene. 2009 Aug 15;443(1-2):100-9 [PMID: 19422892]
  52. Int J Mol Cell Med. 2017 Spring;6(2):77-86 [PMID: 28890884]
  53. Pharmacogenet Genomics. 2011 Jul;21(7):440-6 [PMID: 21048526]
  54. Nat Commun. 2021 Aug 26;12(1):5137 [PMID: 34446728]
  55. Genes (Basel). 2021 Jun 18;12(6): [PMID: 34207374]
  56. Breast. 2007 Feb;16(1):86-93 [PMID: 17010609]
  57. Trends Pharmacol Sci. 2014 Jan;35(1):41-50 [PMID: 24361003]
  58. Cancer. 2019 Nov 1;125(21):3738-3748 [PMID: 31287557]
  59. Cell. 2005 Jan 14;120(1):15-20 [PMID: 15652477]
  60. Front Genet. 2019 Oct 25;10:1041 [PMID: 31708973]
  61. PLoS One. 2012;7(4):e36051 [PMID: 22563438]
  62. Mol Med Rep. 2012 Aug;6(2):303-8 [PMID: 22614822]
  63. J Pathol. 2014 Jan;232(2):255-63 [PMID: 24105606]
  64. NPJ Precis Oncol. 2021 Aug 18;5(1):79 [PMID: 34408248]
  65. J Cancer Res Clin Oncol. 2013 Feb;139(2):223-9 [PMID: 23052693]
  66. J Clin Oncol. 2005 May 1;23(13):2988-95 [PMID: 15860854]
  67. Front Mol Biosci. 2019 Oct 01;6:98 [PMID: 31632984]
  68. Cancer Chemother Pharmacol. 2021 Nov;88(5):771-793 [PMID: 34510251]
  69. F1000Res. 2016 Dec 28;5: [PMID: 28299173]
  70. Curr Mol Med. 2011 Mar;11(2):93-109 [PMID: 21342132]
  71. Breast Cancer (Dove Med Press). 2018 Sep 11;10:131-141 [PMID: 30237735]
  72. Sci Rep. 2017 Mar 16;7:44735 [PMID: 28300219]
  73. Nat Rev Cancer. 2020 Oct;20(10):555-572 [PMID: 32778778]
  74. Front Genet. 2019 Mar 27;10:233 [PMID: 30972101]
  75. Nature. 2012 Mar 28;483(7391):570-5 [PMID: 22460902]
  76. Genome Med. 2021 Sep 27;13(1):152 [PMID: 34579788]
  77. J Clin Oncol. 2000 Feb;18(4):724-33 [PMID: 10673513]
  78. N Engl J Med. 2005 Jul 14;353(2):133-44 [PMID: 16014883]
  79. Oncogene. 2005 Nov 17;24(51):7542-51 [PMID: 16044152]
  80. Breast Cancer Res Treat. 2013 Nov;142(1):19-30 [PMID: 24129975]
  81. Biochim Biophys Acta. 2014 Jan;1845(1):84-9 [PMID: 24361676]
  82. PLoS One. 2015 Mar 04;10(3):e0118432 [PMID: 25738806]
  83. Cancers (Basel). 2014 Sep 05;6(3):1769-92 [PMID: 25198391]
  84. Am J Pathol. 2000 Mar;156(3):839-47 [PMID: 10702400]
  85. Biomolecules. 2020 Jun 26;10(6): [PMID: 32604779]
  86. Sci Rep. 2019 Apr 10;9(1):5864 [PMID: 30971831]
  87. Adv Sci (Weinh). 2022 Aug;9(24):e2201501 [PMID: 35785523]
  88. Am J Transl Res. 2017 Feb 15;9(2):683-691 [PMID: 28337296]
  89. Nature. 2018 Aug;560(7717):156-157 [PMID: 30087485]
  90. Toxicology. 2010 May 27;271(3):115-21 [PMID: 20346999]
  91. Mol Oncol. 2016 Jan;10(1):85-100 [PMID: 26372358]
  92. Oncol Rep. 2019 Jul;42(1):313-320 [PMID: 31180538]
  93. IUBMB Life. 2005 Feb;57(2):73-81 [PMID: 16036566]
  94. Biomedicines. 2021 Sep 26;9(10): [PMID: 34680436]
  95. Elife. 2015 Aug 12;4: [PMID: 26267216]

Grants

  1. /Indo-French Centre for the Promotion of Advanced Research - CEFIPRA
  2. /Petroleum Technology Development Fund (PTDF), Nigeria

MeSH Term

Algorithms
Breast Neoplasms
Doxorubicin
Female
Humans
Machine Learning
MicroRNAs

Chemicals

MicroRNAs
Doxorubicin

Word Cloud

Created with Highcharts 10.0.0patientspredictive0molecularDoxorubicinbreastcancermarkersHER2expressionprofilesanalysislargermachinelearningmodelCARTmedianMCCAUCrespectivelyaccuracycommontreatmentHoweverresponddrugsometimescauseslife-threateningsideeffectsAccuratelyanticipatingdoxorubicin-resistantthereforepermitspareriskconsideringalternativetreatmentswithoutdelayStratifyingbasedpretreatmenttumorspromisingapproachadvancetowardambitiousgoalsingle-genegeneshownsufficientlyrecentavailabilitymatcheddoxorubicin-responsediverseacrosspermitsnowmuchscale16algorithms8systematicallyevaluatedcohort2128resultingmodelssubstantiallyshowingcaneasilymissedstandard-scalebestclassificationregressiontreenonlinearlycombining4selectedmiRNAisoformspredictdoxorubicinresponseMatthewcorrelationcoefficientareacurve5680contrastsignificantlyless1457increasestrainingsetsupdatefuturedataresultevenbetterInterpretableMachineLearningModelsPredictResistanceBreastCancerPatientsmicroRNAProfilesartificialintelligencemultiomicsprecisiononcologytumorprofiling

Similar Articles

Cited By