A Programmable Ontology Encompassing the Functional Logic of the Brain.

Aurel A Lazar, Mehmet Kerem Turkcan, Yiyin Zhou
Author Information
  1. Aurel A Lazar: Department of Electrical Engineering, Columbia University, New York, NY, United States.
  2. Mehmet Kerem Turkcan: Department of Electrical Engineering, Columbia University, New York, NY, United States.
  3. Yiyin Zhou: Department of Electrical Engineering, Columbia University, New York, NY, United States.

Abstract

The brain has only a fraction of the number of neurons of higher organisms such as mice and humans. Yet the sheer complexity of its neural circuits recently revealed by large connectomics datasets suggests that computationally modeling the function of fruit fly brain circuits at this scale poses significant challenges. To address these challenges, we present here a programmable ontology that expands the scope of the current brain anatomy ontologies to encompass the functional logic of the fly brain. The programmable ontology provides a language not only for modeling circuit motifs but also for programmatically exploring their functional logic. To achieve this goal, we tightly integrated the programmable ontology with the workflow of the interactive FlyBrainLab computing platform. As part of the programmable ontology, we developed NeuroNLP++, a web application that supports free-form English queries for constructing functional brain circuits fully anchored on the available connectome/synaptome datasets, and the published worldwide literature. In addition, we present a methodology for including a model of the space of odorants into the programmable ontology, and for modeling olfactory sensory circuits of the antenna of the fruit fly brain that detect odorant sources. Furthermore, we describe a methodology for modeling the functional logic of the antennal lobe circuit consisting of a massive number of local feedback loops, a characteristic feature observed across brain regions. Finally, using a circuit library, we demonstrate the power of our methodology for interactively exploring the functional logic of the massive number of feedback loops in the antennal lobe.

Keywords

References

  1. Science. 2022 Mar 4;375(6584):eabk2432 [PMID: 35239393]
  2. Nat Neurosci. 2020 Apr;23(4):544-555 [PMID: 32203499]
  3. J Biomed Semantics. 2013 Oct 18;4(1):32 [PMID: 24139062]
  4. Nature. 2021 Oct;598(7879):111-119 [PMID: 34616062]
  5. Neuron. 2018 Jun 27;98(6):1198-1213.e6 [PMID: 29909998]
  6. PLoS Comput Biol. 2020 Apr 14;16(4):e1007751 [PMID: 32287275]
  7. Elife. 2021 Feb 22;10: [PMID: 33616035]
  8. Cell. 2018 Jul 26;174(3):730-743.e22 [PMID: 30033368]
  9. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2967-76 [PMID: 25964354]
  10. Front Neuroinform. 2019 Jan 10;12:99 [PMID: 30687056]
  11. Nat Neurosci. 2010 Apr;13(4):439-49 [PMID: 20139975]
  12. Nature. 2015 Apr 30;520(7549):633-9 [PMID: 25896325]
  13. Elife. 2021 Oct 26;10: [PMID: 34696823]
  14. J Comp Neurol. 2018 Apr 15;526(6):935-943 [PMID: 29277900]
  15. PLoS One. 2016 Jan 11;11(1):e0146581 [PMID: 26751378]
  16. Nature. 2018 Nov;563(7729):72-78 [PMID: 30382198]
  17. Prog Retin Eye Res. 2020 Feb 5;:100844 [PMID: 32032773]
  18. Front Behav Neurosci. 2017 May 30;11:102 [PMID: 28611607]
  19. Nature. 2019 Nov;575(7781):195-202 [PMID: 31666704]
  20. Annu Rev Vis Sci. 2018 Sep 15;4:143-163 [PMID: 29949723]
  21. Nucleic Acids Res. 2013 Jan;41(Database issue):D996-D1008 [PMID: 23193282]
  22. Curr Biol. 2016 Oct 24;26(20):R1022-R1038 [PMID: 27780045]
  23. J Physiol. 1971 Feb;213(1):31-53 [PMID: 5575343]
  24. Cell. 2020 May 14;181(4):936-953.e20 [PMID: 32386544]
  25. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13711-6 [PMID: 26483464]
  26. Elife. 2020 Sep 07;9: [PMID: 32880371]
  27. Annu Rev Neurosci. 2020 Jul 8;43:465-484 [PMID: 32283995]
  28. PLoS Comput Biol. 2023 Apr 21;19(4):e1011043 [PMID: 37083547]
  29. Trends Neurosci. 2002 Feb;25(2):96-102 [PMID: 11814562]
  30. Curr Opin Neurobiol. 1998 Aug;8(4):529-35 [PMID: 9751656]
  31. Cell. 2006 Apr 7;125(1):143-60 [PMID: 16615896]
  32. Front Neuroinform. 2022 Jul 20;16:896292 [PMID: 35935535]
  33. Curr Biol. 2011 Jan 11;21(1):1-11 [PMID: 21129968]
  34. Annu Rev Psychol. 2016;67:587-612 [PMID: 26393866]
  35. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Mar;206(2):109-124 [PMID: 31691093]
  36. J Neurosci. 2012 Jan 18;32(3):787-98 [PMID: 22262877]

Word Cloud

Created with Highcharts 10.0.0brainontologyfunctionalprogrammablelogiccircuitsmodelingnumberflycircuitmethodologyfeedbackloopsdatasetsfruitchallengespresentexploringconnectome/synaptomeolfactoryantennallobemassivefractionneuronshigherorganismsmicehumansYetsheercomplexityneuralrecentlyrevealedlargeconnectomicssuggestscomputationallyfunctionscaleposessignificantaddressexpandsscopecurrentanatomyontologiesencompassprovideslanguagemotifsalsoprogrammaticallyachievegoaltightlyintegratedworkflowinteractiveFlyBrainLabcomputingplatformpartdevelopedNeuroNLP++webapplicationsupportsfree-formEnglishqueriesconstructingfullyanchoredavailablepublishedworldwideliteratureadditionincludingmodelspaceodorantssensoryantennadetectodorantsourcesFurthermoredescribeconsistinglocalcharacteristicfeatureobservedacrossregionsFinallyusinglibrarydemonstratepowerinteractivelyProgrammableOntologyEncompassingFunctionalLogicBrainDrosophilamelanogastercelltypeearlysystemsilicoexecution

Similar Articles

Cited By