Exposing Single Ni Atoms in Hollow S/N-Doped Carbon Macroporous Fibers for Highly Efficient Electrochemical Oxygen Evolution.

Yafei Zhao, Yan Guo, Xue Feng Lu, Deyan Luan, Xiaojun Gu, Xiong Wen David Lou
Author Information
  1. Yafei Zhao: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  2. Yan Guo: School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
  3. Xue Feng Lu: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  4. Deyan Luan: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  5. Xiaojun Gu: School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
  6. Xiong Wen David Lou: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. ORCID

Abstract

The development of efficient and cost-effective electrocatalysts toward the Oxygen evolution reaction (OER) is highly desirable for clean energy and fuel conversion. Herein, the facile preparation of Ni single atoms embedded hollow S/N-doped carbon macroporous fibers (Ni SAs@S/N-CMF) as efficient catalysts for OER through pyrolysis of designed CdS-NiS /polyacrylonitrile composite fibers is reported. Specifically, CdS provides the sulfur source for the doping of polyacrylonitrile-derived carbon matrix and simultaneously creates the hollow macroporous structure, while NiS is first reduced to nanoparticles and finally evolves into single Ni atoms through the atom migration-trapping strategy. Benefiting from the abundantly exposed single Ni atoms and hollow macroporous structure, the resultant Ni SAs@S/N-CMF electrocatalysts deliver outstanding activity and stability for OER. Specifically, it needs an overpotential of 285 mV to achieve the benchmark current density of 10 mA cm with a small Tafel slope of 50.8 mV dec .

Keywords

References

  1. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
  2. X. F. Lu, Y. Chen, S. B. Wang, S. Y. Gao, X. W. Lou, Adv. Mater. 2019, 31, 1902339.
  3. J. W. Nai, X. W. Lou, Adv. Mater. 2019, 31, 1706825.
  4. N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.
  5. V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, N. M. Markovic, Nat. Mater. 2017, 16, 57.
  6. J. Kibsgaard, I. Chorkendorff, Nat. Energy 2019, 4, 430.
  7. Z.-F. Huang, J. Song, S. Dou, X. Li, J. Wang, X. Wang, Matter 2019, 1, 1494.
  8. A. Grimaud, W. T. Hong, Y. Shao-Horn, J. M. Tarascon, Nat. Mater. 2016, 15, 121.
  9. H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X. W. Lou, Adv. Mater. 2019, 31, 1904548.
  10. T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren, M. G. Kim, J. Liang, X. Wen, H. Jang, J. Han, Y. Huang, Q. Li, J. Cho, Adv. Mater. 2018, 30, 1800757.
  11. X. Xu, F. Song, X. Hu, Nat. Commun. 2016, 7, 12324.
  12. J. Nai, Y. Lu, L. Yu, X. Wang, X. W. Lou, Adv. Mater. 2017, 29, 1703870.
  13. A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65.
  14. L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y. W. Li, C. Shi, X.-D. Wen, D. Ma, Nature 2017, 544, 80.
  15. S. Wei, A. Li, J. C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W. C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, Nat. Nanotechnol. 2018, 13, 856.
  16. L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. Hernandez, A. DeLaRiva, M. Wang, M. Engelhard, L. Kovarik, A. Datye, Y. Wang, Science 2017, 358, 1419.
  17. X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259.
  18. Y. G. Yao, Z. N. Huang, P. F. Xie, L. P. Wu, L. Ma, T. Y. Li, Z. Q. Pang, M. L. Jiao, Z. Q. Liang, J. L. Gao, Y. He, D. J. Kline, M. R. Zachariah, C. M. Wang, J. Lu, T. P. Wu, T. Li, C. Wang, R. S. Yassar, L. B. Hu, Nat. Nanotechnol. 2019, 14, 851.
  19. L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen, J. Chen, M. T. Soo, B. Wood, D. Yang, A. Du, X. Yao, Chem 2018, 4, 285.
  20. J. Yang, Z. Qiu, C. Zhao, W. Wei, W. Chen, Z. Li, Y. Qu, J. Dong, J. Luo, Z. Li, Y. Wu, Angew. Chem., Int. Ed. 2018, 57, 14095.
  21. H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63.
  22. X. Zhang, H. Liang, H. Li, Y. Xia, X. Zhu, L. Peng, W. Zhang, L. Liu, T. Zhao, C. Wang, Z. Zhao, C.-T. Hung, M. M. Zagho, A. A. Elzatahry, W. Li, D. Zhao, Angew. Chem., Int. Ed. 2020, 59, 3287.
  23. Y. Zhao, Z. Pei, X. F. Lu, D. Luan, X. Wang, X. W. Lou, Chem Catal. 2022, 2, 1480.
  24. F. Wang, S. Song, K. Li, J. Li, J. Pan, S. Yao, X. Ge, J. Feng, X. Wang, H. Zhang, Adv. Mater. 2016, 28, 10679.
  25. H. Zhou, T. Liu, X. Zhao, Y. Zhao, H. Lv, S. Fang, X. Wang, F. Zhou, Q. Xu, J. Xu, C. Xiong, Z. Xue, K. Wang, W.-C. Cheong, W. Xi, L. Gu, T. Yao, S. Wei, X. Hong, J. Luo, Y. Li, Y. Wu, Angew. Chem., Int. Ed. 2019, 58, 18388.
  26. H. Zhou, Y. Zhao, J. Gan, J. Xu, Y. Wang, H. Lv, S. Fang, Z. Wang, Z. Deng, X. Wang, P. Liu, W. Guo, B. Mao, H. Wang, T. Yao, X. Hong, S. Wei, X. Duan, J. Luo, Y. Wu, J. Am. Chem. Soc. 2020, 142, 12643.
  27. Y. Zhao, H. Zhou, W. Chen, Y. Tong, C. Zhao, Y. Lin, Z. Jiang, Q. Zhang, Z. Xue, W.-C. Cheong, B. Jin, F. Zhou, W. Wang, M. Chen, X. Hong, J. Dong, S. Wei, Y. Li, Y. Wu, J. Am. Chem. Soc. 2019, 141, 10590.
  28. W. Wang, Y. Wu, T. Liu, Y. Zhao, Y. Qu, R. Yang, Z. Xue, Z. Wang, F. Zhou, J. Long, Z. Yang, X. Han, Y. Lin, M. Chen, L. Zheng, H. Zhou, X. Lin, F. Wu, H. Wang, Y. Yang, Y. Li, Y. Dai, Y. Wu, ACS Catal. 2022, 12, 2632.
  29. X. Yan, L. Zhuang, Z. Zhu, X. Yao, Nanoscale 2021, 13, 3327.
  30. J. Li, M. Li, N. An, S. Zhang, Q. Song, Y. Yang, X. Liu, Proc. Natl. Acad. Sci. USA 2021, 118, e2105628118.
  31. Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W.-C. Cheong, R. Shen, N. Fu, L. Gu, Z. Zhuang, C. Chen, D. Wang, Q. Peng, J. Li, Y. Li, Adv. Mater. 2018, 30, 1800588.
  32. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
  33. P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Angew. Chem., Int. Ed. 2017, 56, 610.
  34. D. Li, Y. Jia, G. Chang, J. Chen, H. Liu, J. Wang, Y. Hu, Y. Xia, D. Yang, X. Yao, Chem 2018, 4, 2345.
  35. Y. Zhao, J. Wan, H. Yao, L. Zhang, K. Lin, W. Lei, N. Yang, D. Liu, S. Li, Z. Jia, Nat. Chem. 2018, 10, 924.
  36. Q. Dong, C. Shuai, Z. Mo, R. Guo, N. Liu, G. Liu, J. Wang, W. Liu, Y. Chen, J. Liu, Y. Jiang, Q. Gao, CrystEngComm 2021, 23, 1172.
  37. Y. Huang, S. L. Zhang, X. F. Lu, Z. P. Wu, D. Luan, X. W. Lou, Angew. Chem., Int. Ed. 2021, 60, 11841.
  38. J. Zhang, W. Jiang, S. Niu, H. Zhang, J. Liu, H. Li, G. Huang, L. Jiang, W. Huang, J. Hu, W. Hu, Adv. Mater. 2020, 32, 1906015.

Grants

  1. MOE2019-T2-2-049/Ministry of Education of Singapore
  2. 22162019/National Natural Science Foundation of China
  3. 2021GG0195/Science and Technology Projects of Inner Mongolia Autonomous Region

Word Cloud

Created with Highcharts 10.0.0NisingleatomsmacroporousOERhollowcarbonfibersefficientelectrocatalystsoxygenevolutionreactionS/N-dopedSAs@S/N-CMFSpecificallystructuredevelopmentcost-effectivetowardhighlydesirablecleanenergyfuelconversionHereinfacilepreparationembeddedcatalystspyrolysisdesignedCdS-NiS/polyacrylonitrilecompositereportedCdSprovidessulfursourcedopingpolyacrylonitrile-derivedmatrixsimultaneouslycreatesNiSfirstreducednanoparticlesfinallyevolvesatommigration-trappingstrategyBenefitingabundantlyexposedresultantdeliveroutstandingactivitystabilityneedsoverpotential285 mVachievebenchmarkcurrentdensity10 mAcmsmallTafelslope508 mVdecExposingSingleAtomsHollowS/N-DopedCarbonMacroporousFibersHighlyEfficientElectrochemicalOxygenEvolutionmaterials

Similar Articles

Cited By (4)