CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin.

Navid Rabiee, Omid Akhavan, Yousef Fatahi, Amir Mohammad Ghadiri, Mahsa Kiani, Pooyan Makvandi, Mohammad Rabiee, Mohammad Hossein Nicknam, Mohammad Reza Saeb, Rajender S Varma, Milad Ashrafizadeh, Ehsan Nazarzadeh Zare, Esmaeel Sharifi, Eder C Lima
Author Information
  1. Navid Rabiee: Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea. Electronic address: nrabiee94@gmail.com.
  2. Omid Akhavan: Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
  3. Yousef Fatahi: Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
  4. Amir Mohammad Ghadiri: Department of Chemistry, Sharif University of Technology, Tehran, Iran.
  5. Mahsa Kiani: Department of Chemistry, Sharif University of Technology, Tehran, Iran.
  6. Pooyan Makvandi: Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
  7. Mohammad Rabiee: Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
  8. Mohammad Hossein Nicknam: Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  9. Mohammad Reza Saeb: Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland.
  10. Rajender S Varma: Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
  11. Milad Ashrafizadeh: Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
  12. Ehsan Nazarzadeh Zare: School of Chemistry, Damghan University, Damghan, 36716-41167, Iran.
  13. Esmaeel Sharifi: Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran.
  14. Eder C Lima: Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil. Electronic address: profederlima@gmail.com.

Abstract

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.

Keywords

References

  1. Molecules. 2021 Jun 12;26(12): [PMID: 34204666]
  2. Small. 2021 Oct;17(42):e2102453 [PMID: 34319644]
  3. J Hazard Mater. 2022 Aug 15;436:129259 [PMID: 35739778]
  4. Sci Total Environ. 2022 Jun 15;825:153902 [PMID: 35182622]
  5. RSC Adv. 2021 Oct 26;11(55):34688-34698 [PMID: 35494766]
  6. J Am Chem Soc. 2009 Mar 18;131(10):3462-3 [PMID: 19275256]
  7. Int J Mol Sci. 2020 Jul 20;21(14): [PMID: 32698479]
  8. Nano Lett. 2013 Jul 10;13(7):3248-55 [PMID: 23786263]
  9. J Mol Recognit. 2021 Nov;34(11):e2928 [PMID: 34378255]
  10. Int J Nanomedicine. 2020 Jun 09;15:3983-3999 [PMID: 32606660]
  11. Nanomedicine. 2020 Nov;30:102297 [PMID: 32931927]
  12. J Phys Chem B. 2011 May 19;115(19):6279-88 [PMID: 21513335]
  13. ACS Appl Bio Mater. 2021 Jun 21;4(6):5106-5121 [PMID: 35007059]
  14. ACS Nano. 2010 Oct 26;4(10):5731-6 [PMID: 20925398]
  15. Nano Today. 2020 Oct;34: [PMID: 32788923]
  16. ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10796-10811 [PMID: 33621063]
  17. J Hazard Mater. 2022 Feb 5;423(Pt B):127130 [PMID: 34530276]
  18. Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:52-9 [PMID: 27612688]
  19. J Colloid Interface Sci. 2009 Aug 1;336(1):117-24 [PMID: 19394952]
  20. Biotechnol Adv. 2018 Jul - Aug;36(4):968-985 [PMID: 29499341]
  21. J Biomed Nanotechnol. 2020 Apr 1;16(4):456-466 [PMID: 32970978]
  22. J Hazard Mater. 2022 Feb 15;424(Pt A):127391 [PMID: 34879581]
  23. ACS Cent Sci. 2020 Feb 26;6(2):100-116 [PMID: 32123729]
  24. ACS Nano. 2019 Jul 23;13(7):7410-7424 [PMID: 31287659]
  25. Nanoscale. 2016 Apr 7;8(13):6981-5 [PMID: 26975904]
  26. ACS Biomater Sci Eng. 2022 Jan 10;8(1):284-292 [PMID: 34914879]
  27. Materials (Basel). 2021 Jun 30;14(13): [PMID: 34208958]
  28. J Am Chem Soc. 2017 Jun 7;139(22):7522-7532 [PMID: 28508624]
  29. Med Hypotheses. 2020 Nov;144:109917 [PMID: 32505072]
  30. Biomaterials. 2020 Feb;232:119707 [PMID: 31874428]
  31. Biosens Bioelectron. 2022 Feb 1;197:113781 [PMID: 34781178]
  32. J Am Chem Soc. 2020 Dec 23;142(51):21267-21271 [PMID: 33306369]
  33. ACS Nano. 2010 Jul 27;4(7):4174-80 [PMID: 20550104]
  34. Adv Healthc Mater. 2019 May;8(10):e1801589 [PMID: 30963725]
  35. ACS Biomater Sci Eng. 2021 Jul 12;7(7):3053-3068 [PMID: 34152742]
  36. ACS Appl Mater Interfaces. 2020 Aug 12;12(32):35813-35825 [PMID: 32664715]
  37. Nanomedicine. 2021 Feb;32:102331 [PMID: 33181272]
  38. Adv Healthc Mater. 2022 Feb;11(3):e2102321 [PMID: 34800003]
  39. Nano Lett. 2016 Sep 14;16(9):5619-30 [PMID: 27483134]
  40. Nanotechnology. 2020 Jun 30;31(42):425101 [PMID: 32604076]
  41. J Am Chem Soc. 2011 Nov 9;133(44):17560-3 [PMID: 21985458]
  42. Biomaterials. 2012 Nov;33(32):8017-25 [PMID: 22863381]
  43. J Biomed Nanotechnol. 2020 Apr 1;16(4):520-530 [PMID: 32970983]
  44. Sustain Chem Pharm. 2021 Jun;21:100415 [PMID: 33686371]
  45. Nanoscale Adv. 2020 Sep 9;2(11):5254-5262 [PMID: 36132036]
  46. J Am Chem Soc. 2017 Mar 29;139(12):4513-4520 [PMID: 28256830]
  47. Nano Lett. 2016 Mar 9;16(3):1574-82 [PMID: 26901695]
  48. Int Arch Occup Environ Health. 2010 Aug;83(6):691-702 [PMID: 20145945]

MeSH Term

Calcium
DNA, Single-Stranded
Doxorubicin
HEK293 Cells
HeLa Cells
Humans
Nanoparticle Drug Delivery System
SARS-CoV-2
Spike Glycoprotein, Coronavirus
Zinc Oxide

Chemicals

DNA, Single-Stranded
Nanoparticle Drug Delivery System
Spike Glycoprotein, Coronavirus
spike protein, SARS-CoV-2
Doxorubicin
Zinc Oxide
Calcium

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2ssDNApCRISPRleaddetectionNGsproteins/antigensgene-relatedsequencestraceconcentrationsand/orCaZnO-basednanoghostssynthesizedchemicalphysicalsimilarMSCsinorganicbehaviorrecombinantspikeantigenlinesdeliveryOverexpressionbodiessignificantmutationsrefractorydiseasesDetectionidentificationassortedremainchallengingaffectingdifferentpathogensmakingvirusesstrongerCorrespondinglycoronavirusmutations/alterationsspreadoverexpressionrelatedantigenspopulationbriskactivitygene-editingtechnologiestreatment/detectionmaypresencebloodThereforeevaluationcriticalimportanceassistancehigh-gravitytechnique1800 MHzfieldcapitalizinguseRosmarinusofficinalisleafextracttemplatingagentcompletebiologicalinvestigationrevealedpresentedmorphologicalfeaturesmesenchymalstemcellsresultingexcellentbiocompatibilityinteractionssDNA-pCRISPR-surfacevariousmechanismscompriseunprecedentedsynthesisfullynanostructureFurthermoreendowedexceptionalabilitydetectivesensing/foldingRSCSAalongin-situhydrogenperoxideHEK-293HeLacelldiscernedaveragedisplayedhighdrugloadingcapacity55%acceptableinternalizationsinsideHT-29 cellaffirmedanticipatedMSCs-likeinorganic-NGstargeteddoxorubicinGeneIn-situbiosensorNanoghosts

Similar Articles

Cited By (6)