The Differential Responses of Coastal Diatoms to Ocean Acidification and Warming: A Comparison Between sp. and .

Ting Cai, Yuanyuan Feng, Yanan Wang, Tongtong Li, Jiancai Wang, Wei Li, Weihua Zhou
Author Information
  1. Ting Cai: School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
  2. Yuanyuan Feng: School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
  3. Yanan Wang: College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China.
  4. Tongtong Li: College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China.
  5. Jiancai Wang: College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China.
  6. Wei Li: College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China.
  7. Weihua Zhou: CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.

Abstract

Marine diatoms are one of the marine phytoplankton functional groups, with high species diversity, playing important roles in the marine food web and carbon sequestration. In order to evaluate the species-specific responses of coastal diatoms to the combined effects of future ocean acidification (OA) and warming on the coastal diatoms, we conducted a semi-continuous incubation on the large centric diatom sp. (~30 μm) and small pennate diatom (~15 μm). A full factorial combination of two temperature levels (15 and 20°C) and pCO (400 and 1,000 ppm) was examined. The results suggest that changes in temperature played a more important role in regulating the physiology of sp. and than CO. For sp., elevated temperature significantly reduced the cellular particulate organic carbon (POC), particulate organic nitrogen (PON), particulate organic phosphate (POP), biogenic silica (BSi), chlorophyll a (Chl ), and protein contents, and the C:N ratio. CO only had significant effects on the growth rate and the protein content. However, for the smaller pennate diatom , the growth rate, POC production rate, and the C:P ratio significantly increased with an elevated temperature, whereas the cellular POP and BSi contents significantly decreased. CO had significant effects on the POC production rate, cellular BSi, POC, and PON contents, the C:P, Si:C, N:P, and Si:P ratios, and sinking rate. The interaction between OA and warming showed mostly antagonistic effects on the physiology of both species. Overall, by comparison between the two species, CO played a more significant role in regulating the growth rate and sinking rate of the large centric diatom sp., whereas had more significant effects on the elemental compositions of the smaller pennate diatom . These results suggest differential sensitivities of different diatom species with different sizes and morphology to the changes in CO/temperature regimes and their interactions.

Keywords

References

  1. Nature. 2015 Jun 4;522(7554):98-101 [PMID: 26017307]
  2. Environ Microbiol. 2010 Jan;12(1):95-104 [PMID: 19735282]
  3. J Phycol. 2008 Apr;44(2):335-49 [PMID: 27041190]
  4. PLoS One. 2014 Jul 10;9(7):e102367 [PMID: 25010420]
  5. Annu Rev Plant Biol. 2005;56:99-131 [PMID: 15862091]
  6. Nature. 2009 May 14;459(7244):185-92 [PMID: 19444204]
  7. Nature. 2003 Sep 25;425(6956):365 [PMID: 14508477]
  8. J Phycol. 2019 Jun;55(3):700-713 [PMID: 30802945]
  9. Glob Chang Biol. 2018 Jun;24(6):2239-2261 [PMID: 29476630]
  10. Sci Total Environ. 2021 Jun 1;771:145167 [PMID: 33736151]
  11. ISME J. 2017 Jan;11(1):31-42 [PMID: 27623332]
  12. Ann Rev Mar Sci. 2010;2:333-65 [PMID: 21141668]
  13. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20602-9 [PMID: 19995981]
  14. Ann Rev Mar Sci. 2011;3:291-315 [PMID: 21329207]
  15. PLoS One. 2015 May 20;10(5):e0126308 [PMID: 25993327]
  16. Philos Trans R Soc Lond B Biol Sci. 2017 Sep 5;372(1728): [PMID: 28717013]
  17. Proc Biol Sci. 2003 Dec 22;270(1533):2605-11 [PMID: 14728784]
  18. Can J Microbiol. 1962 Apr;8:229-39 [PMID: 13902807]
  19. Microbiol Mol Biol Rev. 2012 Sep;76(3):667-84 [PMID: 22933565]
  20. Funct Plant Biol. 2014 Apr;41(5):449-459 [PMID: 32481004]
  21. Ecol Lett. 2013 Mar;16(3):371-9 [PMID: 23279624]
  22. Photosynth Res. 2017 Jan;131(1):93-103 [PMID: 27566625]
  23. Anal Biochem. 2019 May 15;573:67-72 [PMID: 30853377]
  24. Photosynth Res. 2020 Dec;146(1-3):189-195 [PMID: 32114648]
  25. Environ Sci Pollut Res Int. 2017 Dec;24(34):26763-26777 [PMID: 28963632]
  26. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12788-93 [PMID: 19620720]
  27. Nat Commun. 2021 Nov 5;12(1):6413 [PMID: 34741038]
  28. Science. 2015 Jul 3;349(6243):aac4722 [PMID: 26138982]
  29. J Exp Bot. 2020 Jun 22;71(12):3386-3389 [PMID: 32161972]
  30. J Phycol. 2019 Jun;55(3):663-675 [PMID: 30685888]
  31. Nat Rev Genet. 2005 Feb;6(2):119-27 [PMID: 15716908]
  32. PLoS One. 2012;7(11):e49632 [PMID: 23226215]
  33. Mar Drugs. 2020 May 15;18(5): [PMID: 32429035]

Word Cloud

Created with Highcharts 10.0.0ratediatomeffectsspdiatomsspeciestemperatureCOPOCsignificantwarmingpennatesignificantlycellularparticulateorganicBSicontentsgrowthsinkingmarineimportantcarboncoastaloceanacidificationOAlargecentricμmtworesultssuggestchangesplayedroleregulatingphysiologyelevatedPONPOPproteinratiosmallerproductionC:PwhereasdifferentMarineonephytoplanktonfunctionalgroupshighdiversityplayingrolesfoodwebsequestrationorderevaluatespecies-specificresponsescombinedfutureconductedsemi-continuousincubation~30small~15fullfactorialcombinationlevels1520°CpCO4001000ppmexaminedreducednitrogenphosphatebiogenicsilicachlorophyllChlC:NcontentHoweverincreaseddecreasedSi:CN:PSi:PratiosinteractionshowedmostlyantagonisticOverallcomparisonelementalcompositionsdifferentialsensitivitiessizesmorphologyCO/temperatureregimesinteractionsDifferentialResponsesCoastalDiatomsOceanAcidificationWarming:Comparisonbiogeochemistry

Similar Articles

Cited By