Comparative Transcriptome Analysis Provides Insights Into the Mechanism by Which 2,4-Dichlorophenoxyacetic Acid Improves Thermotolerance in .

Ruiping Xu, Shasha Zhou, Jiaxin Song, Haiying Zhong, Tianwen Zhu, Yuhua Gong, Yan Zhou, Yinbing Bian
Author Information
  1. Ruiping Xu: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  2. Shasha Zhou: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  3. Jiaxin Song: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  4. Haiying Zhong: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  5. Tianwen Zhu: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  6. Yuhua Gong: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  7. Yan Zhou: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
  8. Yinbing Bian: Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

Abstract

As the widest cultivated edible mushroom worldwide, suffers serious yield and quality losses from heat stress during growth and development, and in our previous study, exogenous 2,4-Dichlorophenoxyacetic acid (2,4-D) was found to improve the thermotolerance of strain YS3357, but the molecular mechanism remains unclear. Here, we explored the potential protective mechanism of exogenous 2,4-D against heat stress by transcriptome analysis. 2,4-D possible improve the thermotolerance of through regulating antioxidant genes, transcription factors, energy-provision system, membrane fluidity, and cell wall remodeling. Furthermore, 2,4-D was also found to regulate the saturation levels of fatty acids and ATP content in mycelium under heat stress. This study proposed a regulatory network of 2,4-D in regulating response to heat stress, providing a theoretical basis for improving thermotolerance, and facilitating the understanding of the molecular mechanism of exogenous hormones in alleviating abiotic stress damage to macrofungi.

Keywords

References

  1. Curr Opin Plant Biol. 2004 Jun;7(3):254-61 [PMID: 15134745]
  2. J Mass Spectrom. 2003 May;38(5):531-9 [PMID: 12794875]
  3. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  4. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5 [PMID: 22123947]
  5. Environ Microbiol. 2017 Apr;19(4):1653-1668 [PMID: 28198137]
  6. PLoS One. 2016 Aug 08;11(8):e0160336 [PMID: 27500531]
  7. J Biol Chem. 2002 Aug 30;277(35):31994-2002 [PMID: 12077151]
  8. Plant Cell. 2016 Aug;28(8):1795-814 [PMID: 27385817]
  9. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  10. Annu Rev Cell Dev Biol. 2005;21:223-45 [PMID: 16212494]
  11. Nature. 1998 Jan 8;391(6663):199-203 [PMID: 9428769]
  12. Mol Plant Pathol. 2021 Jul;22(7):858-881 [PMID: 33973705]
  13. FEMS Microbiol Lett. 2008 Sep;286(2):145-51 [PMID: 18789126]
  14. Biol Chem. 2020 Aug 27;401(9):1031-1039 [PMID: 32284438]
  15. Cytokine Growth Factor Rev. 2013 Aug;24(4):345-53 [PMID: 23403036]
  16. Fungal Genet Biol. 2018 Sep;118:37-44 [PMID: 30003956]
  17. Microb Cell Fact. 2021 Jul 19;20(1):137 [PMID: 34281563]
  18. Microbiologyopen. 2016 Aug;5(4):709-18 [PMID: 27147196]
  19. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7 [PMID: 16845012]
  20. Curr Microbiol. 2015 Jul;71(1):62-9 [PMID: 25941022]
  21. Appl Microbiol Biotechnol. 2018 Aug;102(15):6627-6636 [PMID: 29846777]
  22. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  23. Curr Biol. 2019 Dec 16;29(24):R1326-R1338 [PMID: 31846685]
  24. Curr Biol. 2009 Jan 13;19(1):9-19 [PMID: 19119011]
  25. PLoS One. 2014 Mar 10;9(3):e91298 [PMID: 24614118]
  26. Front Plant Sci. 2021 Nov 18;12:738660 [PMID: 34868122]
  27. Cell Tissue Res. 2017 Jan;367(1):21-31 [PMID: 27425851]
  28. Biotechnol Lett. 2012 Oct;34(10):1915-9 [PMID: 22763851]
  29. Cell Cycle. 2017 Jan 2;16(1):45-58 [PMID: 27687866]
  30. Front Microbiol. 2020 Apr 17;11:707 [PMID: 32362887]
  31. Front Microbiol. 2019 Dec 11;10:2845 [PMID: 31921028]
  32. Sci Rep. 2019 Mar 29;9(1):5319 [PMID: 30926897]
  33. Appl Microbiol Biotechnol. 2021 Oct;105(20):7567-7576 [PMID: 34536103]
  34. Appl Microbiol Biotechnol. 2015 Apr;99(7):3115-26 [PMID: 25573474]
  35. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  36. Cells. 2021 Apr 13;10(4): [PMID: 33924665]
  37. Mol Cell Biol. 2010 Aug;30(15):3758-66 [PMID: 20498274]
  38. Front Microbiol. 2018 Jul 25;9:1677 [PMID: 30090094]
  39. J Fungi (Basel). 2022 Feb 21;8(2): [PMID: 35205962]
  40. Plant Physiol. 1990 Aug;93(4):1365-9 [PMID: 16667626]
  41. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8569-74 [PMID: 20421476]
  42. Plant J. 2005 Jan;41(1):95-106 [PMID: 15610352]
  43. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  44. Cell Mol Life Sci. 2003 Sep;60(9):1838-51 [PMID: 14523547]
  45. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  46. Plant Physiol Biochem. 2018 Nov;132:535-546 [PMID: 30316163]
  47. J Integr Plant Biol. 2018 Sep;60(9):757-779 [PMID: 30030890]
  48. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80 [PMID: 14681412]
  49. Int J Mol Sci. 2019 May 10;20(9): [PMID: 31083449]
  50. Biochim Biophys Acta. 2012 Dec;1826(2):370-84 [PMID: 22750268]
  51. Methods Mol Biol. 2011;696:291-303 [PMID: 21063955]
  52. Biochem Genet. 1980 Dec;18(11-12):1041-53 [PMID: 7247923]
  53. Environ Microbiol. 2018 Nov;20(11):4037-4050 [PMID: 30307098]
  54. FEBS Lett. 2013 Mar 18;587(6):793-8 [PMID: 23416294]
  55. Cell Physiol Biochem. 2018;50(5):1617-1637 [PMID: 30384356]
  56. Curr Opin Plant Biol. 1999 Aug;2(4):280-6 [PMID: 10458996]

Word Cloud

Created with Highcharts 10.0.02stressheat4-Dexogenousacidthermotolerancemechanismstudy4-DichlorophenoxyaceticfoundimprovemoleculartranscriptomeregulatingfattywidestcultivatedediblemushroomworldwidesuffersseriousyieldqualitylossesgrowthdevelopmentpreviousstrainYS3357remainsunclearexploredpotentialprotectiveanalysispossibleantioxidantgenestranscriptionfactorsenergy-provisionsystemmembranefluiditycellwallremodelingFurthermorealsoregulatesaturationlevelsacidsATPcontentmyceliumproposedregulatorynetworkresponseprovidingtheoreticalbasisimprovingfacilitatingunderstandinghormonesalleviatingabioticdamagemacrofungiComparativeTranscriptomeAnalysisProvidesInsightsMechanismAcidImprovesThermotolerance4-dichlorophenoxyaceticLentinulaedodescomparativemetabolism

Similar Articles

Cited By (4)