Tracking Molecular Diffusion across Biomaterials' Interfaces Using Stimulated Raman Scattering.

Han Cui, Andrew Glidle, Jonathan M Cooper
Author Information
  1. Han Cui: Beijing Key Lab for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
  2. Andrew Glidle: Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom.
  3. Jonathan M Cooper: Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom. ORCID

Abstract

The determination of molecular diffusion across biomaterial interfaces, including those involving hydrogels and tissues remains important, underpinning the understanding of a broad range of processes including, for example, drug delivery. Current techniques using Raman spectroscopy have previously been established as a method to quantify diffusion coefficients, although when using spontaneous Raman spectroscopy, the signal can be weak and dominated by interferences such as background fluorescence (including biological autofluoresence). To overcome these issues, we demonstrate the use of the stimulated Raman scattering technique to obtain measurements in soft tissue samples that have good signal-to-noise ratios and are largely free from fluorescence interference. As a model illustration of a small metabolite/drug molecule being transported through tissue, we use deuterated (-) glucose and monitor the Raman C-D band in a spectroscopic region free from other Raman bands. The results show that although mass transport follows a diffusion process characterized by Fick's laws within hydrogel matrices, more complex mechanisms appear within tissues.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7725-30 [PMID: 26056283]
  2. Nat Biotechnol. 2008 Nov;26(11):1261-8 [PMID: 18997767]
  3. Small. 2021 Jun;17(24):e2101114 [PMID: 34013665]
  4. Nat Commun. 2021 Mar 26;12(1):1913 [PMID: 33772014]
  5. Nat Mater. 2019 Apr;18(4):342-348 [PMID: 30804507]
  6. Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15842-15848 [PMID: 31324741]
  7. Sci Adv. 2021 Jan 6;7(2): [PMID: 33523971]
  8. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  9. Sci Adv. 2018 Nov 16;4(11):eaat7715 [PMID: 30456301]
  10. Nano Lett. 2018 Dec 12;18(12):8025-8029 [PMID: 30484320]
  11. Anal Chem. 2015 Jun 2;87(11):5802-9 [PMID: 25923826]
  12. Expert Rev Med Devices. 2006 Mar;3(2):215-34 [PMID: 16515388]
  13. Science. 2017 Jul 7;357(6346):67-71 [PMID: 28572453]
  14. Anal Chem. 2013 Nov 19;85(22):10820-8 [PMID: 24099603]
  15. Lab Chip. 2017 Aug 8;17(16):2768-2776 [PMID: 28660976]
  16. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  17. ACS Cent Sci. 2017 Dec 27;3(12):1294-1303 [PMID: 29296670]
  18. J Pharm Sci. 2017 Feb;106(2):639-644 [PMID: 27837968]
  19. J Am Chem Soc. 2017 Nov 29;139(47):17022-17030 [PMID: 29111701]

MeSH Term

Biocompatible Materials
Diffusion
Hydrogels
Spectrum Analysis, Raman

Chemicals

Biocompatible Materials
Hydrogels

Word Cloud

Created with Highcharts 10.0.0RamandiffusionincludingspectroscopytissueacrossbiomaterialinterfaceshydrogelstissuesusingalthoughfluorescenceusestimulatedscatteringfreewithindeterminationmolecularinvolvingremainsimportantunderpinningunderstandingbroadrangeprocessesexampledrugdeliveryCurrenttechniquespreviouslyestablishedmethodquantifycoefficientsspontaneoussignalcanweakdominatedinterferencesbackgroundbiologicalautofluoresenceovercomeissuesdemonstratetechniqueobtainmeasurementssoftsamplesgoodsignal-to-noiseratioslargelyinterferencemodelillustrationsmallmetabolite/drugmoleculetransporteddeuterated-glucosemonitorC-DbandspectroscopicregionbandsresultsshowmasstransportfollowsprocesscharacterizedFick'slawshydrogelmatricescomplexmechanismsappearTrackingMolecularDiffusionBiomaterials'InterfacesUsingStimulatedScattering

Similar Articles

Cited By