The influence of phoneme contexts on adaptation in vowel-evoked envelope following responses.

Vijayalakshmi Easwar, Lauren Chung
Author Information
  1. Vijayalakshmi Easwar: Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin, USA. ORCID
  2. Lauren Chung: Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Abstract

Repeated stimulus presentation leads to neural adaptation and consequent amplitude reduction in vowel-evoked envelope following responses (EFRs)-a response that reflects neural activity phase-locked to envelope periodicity. EFRs are elicited by vowels presented in isolation or in the context of other phonemes such as consonants in syllables. While context phonemes could exert some forward influence on vowel-evoked EFRs, they may reduce the degree of adaptation. Here, we evaluated whether the properties of context phonemes between consecutive vowel stimuli influence adaptation. EFRs were elicited by the low-frequency first formant (resolved harmonics) and middle-to-high-frequency second and higher formants (unresolved harmonics) of a male-spoken /i/ when the presence, number and predictability of context phonemes (/s/, /a/, /∫/ and /u/) between vowel repetitions varied. Monitored over four iterations of /i/, adaptation was evident only for EFRs elicited by the unresolved harmonics. EFRs elicited by the unresolved harmonics decreased in amplitude by ~16-20 nV (10%-17%) after the first presentation of /i/ and remained stable thereafter. EFR adaptation was reduced by the presence of a context phoneme, but the reduction did not change with their number or predictability. The presence of a context phoneme, however, attenuated EFRs by a degree similar to that caused by adaptation (~21-23 nV). Such a trade-off in the short- and long-term influence of context phonemes suggests that the benefit of interleaving EFR-eliciting vowels with other context phonemes depends on whether the use of consonant-vowel syllables is critical to improve the validity of EFR applications.

Keywords

References

  1. Ear Hear. 2022 Jul-Aug 01;43(4):1327-1335 [PMID: 35120354]
  2. Front Neural Circuits. 2018 Sep 05;12:72 [PMID: 30233332]
  3. J Assoc Res Otolaryngol. 2022 Aug 24;: [PMID: 36002663]
  4. J Neurosci. 2009 Feb 25;29(8):2553-62 [PMID: 19244530]
  5. Eur J Neurosci. 2012 Aug;36(4):2428-39 [PMID: 22694786]
  6. Ear Hear. 2021 Jan 25;42(3):662-672 [PMID: 33577218]
  7. Neuropsychologia. 2011 Oct;49(12):3338-45 [PMID: 21864552]
  8. J Acoust Soc Am. 1982 Sep;72(3):795-803 [PMID: 7130538]
  9. Brain Struct Funct. 2016 May;221(4):2303-17 [PMID: 25921974]
  10. Otol Neurotol. 2018 Feb;39(2):150-157 [PMID: 29315177]
  11. Audiol Neurootol. 2006;11(4):213-32 [PMID: 16612051]
  12. Sci Rep. 2016 Nov 17;6:37405 [PMID: 27853313]
  13. Ear Hear. 2020 Nov/Dec;41(6):1732-1746 [PMID: 33136646]
  14. J Acoust Soc Am. 2005 Jun;117(6):3787-98 [PMID: 16018482]
  15. Eur J Neurosci. 2018 Nov;48(10):3126-3145 [PMID: 30240514]
  16. Hear Res. 2015 Feb;320:38-50 [PMID: 25500177]
  17. J Acoust Soc Am. 1981 Feb;69(2):492-9 [PMID: 7462471]
  18. Br J Audiol. 1992 Dec;26(6):351-61 [PMID: 1292819]
  19. Audiol Res. 2015 Jan 21;5(1):113 [PMID: 26557360]
  20. Front Integr Neurosci. 2014 Feb 21;8:19 [PMID: 24600361]
  21. Ear Hear. 2015 Nov-Dec;36(6):635-52 [PMID: 26226606]
  22. Neuroscience. 2011 May 5;181:163-74 [PMID: 21284952]
  23. J Neurosci. 2009 Apr 29;29(17):5483-93 [PMID: 19403816]
  24. J Am Acad Audiol. 2005 Mar;16(3):140-56 [PMID: 15844740]
  25. J Acoust Soc Am. 2004 Nov;116(5):3038-50 [PMID: 15603149]
  26. Int J Audiol. 2018 Sep;57(9):665-672 [PMID: 29764252]
  27. Neuron. 2009 Nov 12;64(3):311-9 [PMID: 19914180]
  28. J Speech Hear Res. 1990 Jun;33(2):380-5 [PMID: 2359278]
  29. Int J Otolaryngol. 2012;2012:518202 [PMID: 23316236]
  30. Hear Res. 2008 Nov;245(1-2):35-47 [PMID: 18765275]
  31. Curr Opin Neurobiol. 2007 Aug;17(4):423-9 [PMID: 17714934]
  32. Ear Hear. 2013 Sep;34(5):637-50 [PMID: 23575462]
  33. Sci Rep. 2016 Apr 12;6:24114 [PMID: 27066835]
  34. Neuroscience. 2013 Jul 23;243:104-14 [PMID: 23518221]
  35. Hear Res. 1982 Apr;6(3):315-34 [PMID: 7085488]
  36. Nat Neurosci. 2003 Apr;6(4):391-8 [PMID: 12652303]
  37. Hear Res. 2013 Oct;304:28-32 [PMID: 23792077]
  38. Eur J Neurosci. 2013 Jan;37(1):52-62 [PMID: 23121128]
  39. J Neurosci. 2012 Jan 25;32(4):1447-52 [PMID: 22279229]
  40. J Neurophysiol. 2017 Feb 1;117(2):594-603 [PMID: 27832606]
  41. Ear Hear. 2013 Jan-Feb;34(1):63-74 [PMID: 22814487]
  42. Ear Hear. 2015 Nov-Dec;36(6):619-34 [PMID: 26226607]
  43. Hear Res. 2019 Sep 1;380:35-45 [PMID: 31176869]
  44. Eur J Neurosci. 2022 Sep;56(5):4572-4582 [PMID: 35804282]
  45. Ear Hear. 2002 Oct;23(5):477-87 [PMID: 12411780]

MeSH Term

Acoustic Stimulation
Humans
Male
Phonetics
Speech Perception

Word Cloud

Created with Highcharts 10.0.0contextadaptationEFRsphonemeselicitedinfluenceharmonicsvowel-evokedenvelopefollowingunresolved/i/presencephonemepresentationneuralamplitudereductionresponsesresponsevowelsconsonantssyllablesforwarddegreewhethervowelfirstnumberpredictabilityEFRRepeatedstimulusleadsconsequent-areflectsactivityphase-lockedperiodicitypresentedisolationexertmayreduceevaluatedpropertiesconsecutivestimulilow-frequencyformantresolvedmiddle-to-high-frequencysecondhigherformantsmale-spoken/s//a//∫//u/repetitionsvariedMonitoredfouriterationsevidentdecreased~16-20 nV10%-17%remainedstablethereafterreducedchangehoweverattenuatedsimilarcaused~21-23 nVtrade-offshort-long-termsuggestsbenefitinterleavingEFR-elicitingdependsuseconsonant-vowelcriticalimprovevalidityapplicationscontextsmaskingfrequencyfricativesphaselocking

Similar Articles

Cited By