Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops.

Yaru Gao, Hong Zou, Baoshan Wang, Fang Yuan
Author Information
  1. Yaru Gao: Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan 250014, China.
  2. Hong Zou: Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan 250014, China.
  3. Baoshan Wang: Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan 250014, China.
  4. Fang Yuan: Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan 250014, China. ORCID

Abstract

Saline soils are a major challenge in agriculture, and salinization is increasing worldwide due to climate change and destructive agricultural practices. Excessive amounts of salt in soils cause imbalances in ion distribution, physiological dehydration, and oxidative stress in plants. Breeding and genetic engineering methods to improve plant salt tolerance and the better use of saline soils are being explored; however, these approaches can take decades to accomplish. A shorter-term approach to improve plant salt tolerance is to be inoculated with bacteria with high salt tolerance or adjusting the balance of bacteria in the rhizosphere, including endosymbiotic bacteria (living in roots or forming a symbiont) and exosymbiotic bacteria (living on roots). Rhizosphere bacteria promote plant growth and alleviate salt stress by providing minerals (such as nitrogen, phosphate, and potassium) and hormones (including auxin, cytokinin, and abscisic acid) or by reducing ethylene production. Plant growth-promoting rhizosphere bacteria are a promising tool to restore agricultural lands and improve plant growth in saline soils. In this review, we summarize the mechanisms of plant growth-promoting bacteria under salt stress and their applications for improving plant salt tolerance to provide a theoretical basis for further use in agricultural systems.

Keywords

References

  1. Front Microbiol. 2020 Oct 14;11:568289 [PMID: 33162950]
  2. Plant Cell Environ. 2016 Apr;39(4):823-33 [PMID: 26470009]
  3. Curr Microbiol. 2016 Oct;73(4):574-81 [PMID: 27447799]
  4. Front Microbiol. 2015 Sep 09;6:937 [PMID: 26441873]
  5. Microbiol Resour Announc. 2018 Jul 26;7(3): [PMID: 30533867]
  6. J Plant Physiol. 2014 Jul 1;171(11):884-94 [PMID: 24913045]
  7. Science. 1998 Jun 19;280(5371):1906-7 [PMID: 9669949]
  8. Plant Cell Environ. 2015 Sep;38(9):1785-93 [PMID: 25039365]
  9. Microbiol Resour Announc. 2019 Oct 24;8(43): [PMID: 31649079]
  10. Front Microbiol. 2020 Oct 02;11:2019 [PMID: 33117299]
  11. Plant Signal Behav. 2013 Oct;8(10): [PMID: 24270625]
  12. Front Microbiol. 2019 Jul 09;10:1506 [PMID: 31338077]
  13. Microbiol Res. 2015 Mar;172:7-15 [PMID: 25721473]
  14. Front Microbiol. 2017 Oct 09;8:1945 [PMID: 29062306]
  15. J Appl Microbiol. 2014 Sep;117(3):766-73 [PMID: 24909841]
  16. Can J Microbiol. 2009 Nov;55(11):1302-9 [PMID: 19940939]
  17. Environ Sci Pollut Res Int. 2018 Aug;25(23):23236-23250 [PMID: 29869207]
  18. Microbiol Res. 2015 Dec;181:22-32 [PMID: 26640049]
  19. Wei Sheng Wu Xue Bao. 2010 Nov;50(11):1503-9 [PMID: 21268896]
  20. Sheng Wu Gong Cheng Xue Bao. 2019 Nov 25;35(11):2189-2200 [PMID: 31814364]
  21. Microbiol Res. 2018 Jan;206:25-32 [PMID: 29146257]
  22. Microbiol Res. 2016 Feb;183:92-9 [PMID: 26805622]
  23. J Appl Microbiol. 2012 Sep;113(3):641-51 [PMID: 22726297]
  24. Front Microbiol. 2016 Nov 17;7:1838 [PMID: 27909432]
  25. Appl Environ Microbiol. 2009 Feb;75(3):748-57 [PMID: 19060168]
  26. Mycotoxin Res. 2015 Aug;31(3):137-43 [PMID: 25956808]
  27. Biomed Res Int. 2014;2014:589341 [PMID: 25110683]
  28. J Basic Microbiol. 2014 Aug;54(8):781-91 [PMID: 23775888]
  29. Plants (Basel). 2020 Jul 16;9(7): [PMID: 32708749]
  30. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13386-91 [PMID: 16174735]
  31. Microbiol Res. 2014 Jan 20;169(1):30-9 [PMID: 24095256]
  32. Front Microbiol. 2020 Apr 23;11:752 [PMID: 32390988]
  33. Springerplus. 2013 Dec;2(1):6 [PMID: 23449812]
  34. Braz J Microbiol. 2012 Jul;43(3):1183-91 [PMID: 24031943]
  35. Front Microbiol. 2020 Aug 20;11:1952 [PMID: 32973708]
  36. Braz J Microbiol. 2020 Mar;51(1):229-241 [PMID: 31642002]
  37. Ann Bot. 2003 Apr;91(5):503-27 [PMID: 12646496]
  38. Funct Plant Biol. 2016 Mar;43(2):161-172 [PMID: 32480450]
  39. J Microbiol Biotechnol. 2018 Jun 28;28(6):938-945 [PMID: 29847869]
  40. Appl Microbiol Biotechnol. 2009 Nov;85(2):371-81 [PMID: 19655138]
  41. Front Microbiol. 2016 Oct 13;7:1600 [PMID: 27790198]
  42. Indian J Microbiol. 2011 Jan;51(1):94-9 [PMID: 22282635]
  43. Proc Natl Acad Sci U S A. 2021 Nov 16;118(46): [PMID: 34772809]
  44. Can J Microbiol. 2020 Feb;66(2):144-160 [PMID: 31714812]
  45. Plant Physiol Biochem. 2014 Jan;74:84-91 [PMID: 24270514]
  46. Plant Physiol Biochem. 2015 Feb;87:45-52 [PMID: 25544744]
  47. Front Microbiol. 2019 Aug 14;10:1849 [PMID: 31474952]
  48. Res Microbiol. 2018 Jan;169(1):20-32 [PMID: 28893659]
  49. Plants (Basel). 2022 Jan 27;11(3): [PMID: 35161325]
  50. BMC Plant Biol. 2019 Jun 13;19(1):253 [PMID: 31196035]
  51. Annu Rev Plant Biol. 2004;55:373-99 [PMID: 15377225]
  52. Mol Plant Microbe Interact. 2013 May;26(5):546-53 [PMID: 23301615]
  53. Plant Sci. 2017 Mar;256:170-185 [PMID: 28167031]
  54. Plant Physiol Biochem. 2004 Jun;42(6):565-72 [PMID: 15246071]
  55. New Phytol. 2008;179(4):945-963 [PMID: 18565144]
  56. Mol Cells. 2014 Feb;37(2):109-17 [PMID: 24598995]
  57. PLoS One. 2019 Sep 12;14(9):e0222302 [PMID: 31513660]
  58. Biotechnol Adv. 1999 Oct;17(4-5):319-39 [PMID: 14538133]
  59. Plant Sci. 2013 Jan;198:7-16 [PMID: 23199682]
  60. Front Plant Sci. 2017 Apr 26;8:613 [PMID: 28491070]
  61. Lett Appl Microbiol. 2015 Apr;60(4):392-9 [PMID: 25557002]
  62. Sci Rep. 2020 Mar 16;10(1):4818 [PMID: 32179779]
  63. Microorganisms. 2020 Nov 23;8(11): [PMID: 33238592]
  64. Evid Based Complement Alternat Med. 2011;2011:615032 [PMID: 21716683]
  65. Annu Rev Plant Biol. 2002;53:247-73 [PMID: 12221975]
  66. Curr Microbiol. 2007 Oct;55(4):314-22 [PMID: 17700983]
  67. Arch Microbiol. 2016 May;198(4):379-87 [PMID: 26860842]
  68. Exp Parasitol. 2008 May;119(1):15-23 [PMID: 18346736]
  69. Colloids Surf B Biointerfaces. 2007 Oct 15;60(1):110-6 [PMID: 17643271]
  70. Microb Ecol. 2010 Feb;59(2):344-56 [PMID: 19669227]
  71. Ecotoxicol Environ Saf. 2012 Apr;78:35-40 [PMID: 22138149]
  72. Plant Cell Environ. 2002 Feb;25(2):239-250 [PMID: 11841667]
  73. Physiol Mol Biol Plants. 2016 Oct;22(4):445-459 [PMID: 27924118]
  74. Nature. 2015 Dec 17;528(7582):340-1 [PMID: 26633626]
  75. J Exp Bot. 2012 May;63(9):3415-28 [PMID: 22403432]
  76. Biotechnol Adv. 2016 Nov 15;34(7):1245-1259 [PMID: 27587331]
  77. Biotechnol Adv. 2014 Mar-Apr;32(2):429-48 [PMID: 24380797]
  78. Front Plant Sci. 2017 Oct 23;8:1768 [PMID: 29109733]
  79. Environ Monit Assess. 1995 Jan;37(1-3):17-37 [PMID: 24197838]
  80. Science. 2019 Nov 1;366(6465):606-612 [PMID: 31672892]
  81. Genome Announc. 2016 Feb 18;4(1): [PMID: 26893418]
  82. Microbiol Spectr. 2021 Oct 31;9(2):e0076721 [PMID: 34704793]
  83. Front Plant Sci. 2018 Oct 18;9:1397 [PMID: 30405648]
  84. Cold Spring Harb Perspect Biol. 2011 Apr 01;3(4): [PMID: 21084388]
  85. Sci Total Environ. 2019 Apr 1;659:473-490 [PMID: 31096377]
  86. Front Microbiol. 2019 Dec 18;10:2791 [PMID: 31921005]
  87. PLoS One. 2016 Jun 20;11(6):e0155026 [PMID: 27322827]
  88. Mol Plant Microbe Interact. 2008 Jun;21(6):737-44 [PMID: 18624638]
  89. Ecotoxicol Environ Saf. 2018 Jul 30;156:225-246 [PMID: 29554608]
  90. Science. 2021 Mar 26;371(6536):1350-1355 [PMID: 33632892]
  91. Appl Microbiol Biotechnol. 2004 Oct;65(5):497-503 [PMID: 15378292]
  92. J Plant Physiol. 2015 Jul 20;184:57-67 [PMID: 26217911]
  93. Appl Microbiol Biotechnol. 2012 Feb;93(4):1745-53 [PMID: 21792590]
  94. Arch Biochem Biophys. 2005 Dec 15;444(2):139-58 [PMID: 16309626]
  95. IUBMB Life. 2015 Sep;67(9):677-86 [PMID: 26314939]
  96. Arch Microbiol. 2020 Nov;202(9):2419-2428 [PMID: 32591911]
  97. Huan Jing Ke Xue. 2020 Apr 8;41(4):1941-1949 [PMID: 32608703]
  98. 3 Biotech. 2020 Mar;10(3):119 [PMID: 32117680]
  99. Appl Microbiol Biotechnol. 2019 Sep;103(18):7385-7397 [PMID: 31375881]
  100. Ann Bot. 2010 May;105(5):835-41 [PMID: 20356952]
  101. PLoS One. 2014 May 08;9(5):e96086 [PMID: 24811199]
  102. Physiol Plant. 2016 Sep;158(1):34-44 [PMID: 26932244]
  103. Funct Plant Biol. 2016 Jul;43(7):632-642 [PMID: 32480492]
  104. Front Plant Sci. 2018 Oct 23;9:1473 [PMID: 30405652]
  105. Microbiol Res. 2014 Jan 20;169(1):83-98 [PMID: 23871145]
  106. Plant Cell Rep. 2022 Mar;41(3):549-569 [PMID: 33410927]
  107. Int J Syst Evol Microbiol. 2019 Dec;69(12):3939-3945 [PMID: 31526457]
  108. Saudi J Biol Sci. 2015 Mar;22(2):123-31 [PMID: 25737642]
  109. J Bacteriol. 2011 Jul;193(13):3383-4 [PMID: 21551308]
  110. Metabolites. 2021 May 24;11(6): [PMID: 34074032]
  111. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3735-40 [PMID: 10725350]
  112. Microbiol Res. 2015 Apr;173:1-9 [PMID: 25801965]
  113. BMC Microbiol. 2019 Apr 25;19(1):80 [PMID: 31023221]
  114. BMC Genomics. 2009 Sep 23;10:450 [PMID: 19775431]
  115. Sci Rep. 2016 Aug 30;6:32467 [PMID: 27572178]
  116. Plant Physiol Biochem. 2014 Jul;80:160-7 [PMID: 24769617]
  117. J Exp Bot. 2006;57(5):1149-60 [PMID: 16449373]

Grants

  1. 32170301/National Natural Science Research Foundation of China
  2. 31600200/National Natural Science Research Foundation of China
  3. 21YJAZH108/MOE Layout Foundation of Humanities and Social Sciences

MeSH Term

Bacteria
Crops, Agricultural
Plant Breeding
Plant Roots
Rhizosphere
Salt Tolerance
Soil
Soil Microbiology

Chemicals

Soil

Word Cloud

Created with Highcharts 10.0.0bacteriasaltplantsoilsstresstoleranceagriculturalimprovegrowth-promotingusesalinerhizosphereincludingendosymbioticlivingrootsexosymbioticgrowthPlantSalinemajorchallengeagriculturesalinizationincreasingworldwidedueclimatechangedestructivepracticesExcessiveamountscauseimbalancesiondistributionphysiologicaldehydrationoxidativeplantsBreedinggeneticengineeringmethodsbetterexploredhoweverapproachescantakedecadesaccomplishshorter-termapproachinoculatedhighadjustingbalanceformingsymbiontRhizospherepromotealleviateprovidingmineralsnitrogenphosphatepotassiumhormonesauxincytokininabscisicacidreducingethyleneproductionpromisingtoolrestorelandsreviewsummarizemechanismsapplicationsimprovingprovidetheoreticalbasissystemsProgressApplicationsGrowth-PromotingBacteriaSaltToleranceCropsPGPEBPGPR

Similar Articles

Cited By