Antibiofilm Activities of Cinnamaldehyde Analogs against Uropathogenic and .

Yeseul Kim, Sanghun Kim, Kiu-Hyung Cho, Jin-Hyung Lee, Jintae Lee
Author Information
  1. Yeseul Kim: School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
  2. Sanghun Kim: School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea. ORCID
  3. Kiu-Hyung Cho: Gyeongbuk Institute for Bioindustry, Andong 36618, Korea.
  4. Jin-Hyung Lee: School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
  5. Jintae Lee: School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.

Abstract

Bacterial biofilm formation is a major cause of drug resistance and bacterial persistence; thus, controlling pathogenic biofilms is an important component of strategies targeting infectious bacterial diseases. Cinnamaldehyde (CNMA) has broad-spectrum antimicrobial and antibiofilm activities. In this study, we investigated the antibiofilm effects of ten CNMA derivatives and -CNMA against Gram-negative uropathogenic (UPEC) and Gram-positive . Among the CNMA analogs tested, 4-nitrocinnamaldehyde (4-nitroCNMA) showed antibacterial and antibiofilm activities against UPEC and with minimum inhibitory concentrations (MICs) for cell growth of 100 µg/mL, which were much more active than those of -CNMA. 4-NitroCNMA inhibited UPEC swimming motility, and both -CNMA and 4-nitroCNMA reduced extracellular polymeric substance production by UPEC. Furthermore, 4-nitroCNMA inhibited the formation of mixed UPEC/ biofilms. Collectively, our observations indicate that -CNMA and 4-nitroCNMA potently inhibit biofilm formation by UPEC and . We suggest efforts be made to determine the therapeutic scope of CNMA analogs, as our results suggest CNMA derivatives have potential therapeutic use for biofilm-associated diseases.

Keywords

References

  1. Curr Med Chem. 2022;29(25):4307-4310 [PMID: 34979887]
  2. Front Microbiol. 2016 Dec 21;7:2052 [PMID: 28066373]
  3. Appl Environ Microbiol. 2012 Jun;78(11):4057-61 [PMID: 22467497]
  4. Fitoterapia. 2019 Nov;139:104405 [PMID: 31707126]
  5. Int J Food Microbiol. 2009 Apr 30;131(1):2-9 [PMID: 18954916]
  6. J Urol. 2011 Apr;185(4):1526-31 [PMID: 21334666]
  7. Future Med Chem. 2020 Mar;12(5):357-359 [PMID: 32027174]
  8. Int J Nanomedicine. 2017 Apr 06;12:2813-2828 [PMID: 28435260]
  9. Pathog Dis. 2018 Feb 1;76(1): [PMID: 29342260]
  10. Infect Immun. 1985 Dec;50(3):655-9 [PMID: 3905609]
  11. Turk J Med Sci. 2015;45(4):919-24 [PMID: 26422868]
  12. Trends Microbiol. 2011 Nov;19(11):557-63 [PMID: 21855346]
  13. BMC Microbiol. 2008 Sep 16;8:149 [PMID: 18793453]
  14. FEMS Immunol Med Microbiol. 2012 Jul;65(2):283-90 [PMID: 22364207]
  15. Int J Food Microbiol. 2015 Feb 16;195:30-9 [PMID: 25500277]
  16. Fish Shellfish Immunol. 2014 May;38(1):15-24 [PMID: 24632045]
  17. Microb Drug Resist. 2018 Jun;24(5):666-674 [PMID: 29461939]
  18. Environ Microbiol. 2009 Jan;11(1):1-15 [PMID: 19125816]
  19. Int J Antimicrob Agents. 2010 Apr;35(4):322-32 [PMID: 20149602]
  20. Front Microbiol. 2022 Mar 16;13:818165 [PMID: 35369516]
  21. Lett Appl Microbiol. 2011 Oct;53(4):409-16 [PMID: 21767279]
  22. Sci Rep. 2016 Nov 03;6:36377 [PMID: 27808174]
  23. J Mol Recognit. 2014 Feb;27(2):106-16 [PMID: 24436128]
  24. Biofouling. 2013;29(5):491-9 [PMID: 23668380]
  25. Front Microbiol. 2017 Aug 15;8:1566 [PMID: 28861072]
  26. Int J Mol Sci. 2019 Dec 22;21(1): [PMID: 31877837]
  27. Virulence. 2018 Jan 1;9(1):522-554 [PMID: 28362216]
  28. Nat Rev Microbiol. 2004 Feb;2(2):95-108 [PMID: 15040259]
  29. Nature. 2005 Aug 25;436(7054):1171-5 [PMID: 16121184]
  30. N Engl J Med. 1998 Aug 20;339(8):520-32 [PMID: 9709046]
  31. Front Microbiol. 2022 Jun 16;13:872943 [PMID: 35783430]
  32. Pharmaceutics. 2021 Dec 17;13(12): [PMID: 34959457]
  33. Chemistry. 2014 Apr 14;20(16):4814-21 [PMID: 24616034]
  34. Microb Biotechnol. 2021 Jul;14(4):1353-1366 [PMID: 33252828]
  35. J Bacteriol. 2003 May;185(10):3214-7 [PMID: 12730182]
  36. Infect Immun. 1984 Nov;46(2):318-23 [PMID: 6500692]
  37. Science. 1996 Dec 13;274(5294):1859-66 [PMID: 8943190]
  38. Mol Microbiol. 1998 Oct;30(2):285-93 [PMID: 9791174]
  39. N Engl J Med. 2008 Jul 3;359(1):85-7 [PMID: 18596277]
  40. Pharmacol Res. 2017 Aug;122:78-89 [PMID: 28559210]
  41. Int J Mol Sci. 2021 Mar 09;22(5): [PMID: 33803167]
  42. J Agric Food Chem. 2017 Dec 6;65(48):10406-10423 [PMID: 29155570]
  43. PLoS One. 2017 Jul 27;12(7):e0182122 [PMID: 28750057]
  44. Nat Prod Res. 2018 Jun;32(11):1299-1302 [PMID: 28627304]
  45. Biomolecules. 2021 Feb 18;11(2): [PMID: 33670478]

Grants

  1. 2021R1A2C1008368/National Research Foundation of Korea
  2. 2014R1A6A1031189/National Research Foundation of Korea
  3. 2021R1I1A3A04037486/National Research Foundation of Korea

MeSH Term

Acrolein
Anti-Bacterial Agents
Biofilms
Extracellular Polymeric Substance Matrix
Microbial Sensitivity Tests
Staphylococcus aureus
Uropathogenic Escherichia coli

Chemicals

Anti-Bacterial Agents
Acrolein
cinnamaldehyde

Word Cloud

Created with Highcharts 10.0.0CNMAUPECantibiofilm-CNMA4-nitroCNMAformationbiofilmbacterialbiofilmsdiseasesCinnamaldehydeactivitiesderivativesuropathogenicanalogsinhibitedsuggesttherapeuticBacterialmajorcausedrugresistancepersistencethuscontrollingpathogenicimportantcomponentstrategiestargetinginfectiousbroad-spectrumantimicrobialstudyinvestigatedeffectstenGram-negativeGram-positiveAmongtested4-nitrocinnamaldehydeshowedantibacterialminimuminhibitoryconcentrationsMICscellgrowth100µg/mLmuchactive4-NitroCNMAswimmingmotilityreducedextracellularpolymericsubstanceproductionFurthermoremixedUPEC/Collectivelyobservationsindicatepotentlyinhibiteffortsmadedeterminescoperesultspotentialusebiofilm-associatedAntibiofilmActivitiesAnalogsUropathogenicStaphylococcusaureuscinnamaldehydeEscherichiacoli

Similar Articles

Cited By