The evolutionary history of cribellate orb-weaver capture thread spidroins.

Sandra M Correa-Garhwal, Richard H Baker, Thomas H Clarke, Nadia A Ayoub, Cheryl Y Hayashi
Author Information
  1. Sandra M Correa-Garhwal: Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA. scorrea-garhwal@amnh.org.
  2. Richard H Baker: Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
  3. Thomas H Clarke: Department of Biology, Washington and Lee University, Lexington, VA, USA.
  4. Nadia A Ayoub: Department of Biology, Washington and Lee University, Lexington, VA, USA.
  5. Cheryl Y Hayashi: Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.

Abstract

BACKGROUND: Spiders have evolved two types of sticky capture threads: one with wet adhesive spun by ecribellate orb-weavers and another with dry adhesive spun by cribellate spiders. The evolutionary history of cribellate capture threads is especially poorly understood. Here, we use genomic approaches to catalog the spider-specific silk gene family (spidroins) for the cribellate orb-weaver Uloborus diversus.
RESULTS: We show that the cribellar spidroin, which forms the puffy fibrils of cribellate threads, has three distinct repeat units, one of which is conserved across cribellate taxa separated by ~ 250 Mya. We also propose candidates for a new silk type, paracribellar spidroins, which connect the puffy fibrils to pseudoflagelliform support lines. Moreover, we describe the complete repeat architecture for the pseudoflagelliform spidroin (Pflag), which contributes to extensibility of pseudoflagelliform axial fibers.
CONCLUSIONS: Our finding that Pflag is closely related to Flag, supports homology of the support lines of cribellate and ecribellate capture threads. It further suggests an evolutionary phase following gene duplication, in which both Flag and Pflag were incorporated into the axial lines, with subsequent loss of Flag in uloborids, and increase in expression of Flag in ecribellate orb-weavers, explaining the distinct mechanical properties of the axial lines of these two groups.

Keywords

References

  1. J Biol Chem. 2009 Oct 16;284(42):29097-108 [PMID: 19666476]
  2. Syst Biol. 2020 Mar 1;69(2):401-411 [PMID: 31165170]
  3. Proc Biol Sci. 2012 Apr 7;279(1732):1341-50 [PMID: 22048955]
  4. Cladistics. 2017 Dec;33(6):574-616 [PMID: 34724759]
  5. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489 [PMID: 33237286]
  6. Methods Mol Biol. 2016;1418:283-334 [PMID: 27008021]
  7. Curr Biol. 2018 May 7;28(9):1489-1497.e5 [PMID: 29706520]
  8. Methods Mol Biol. 2019;1962:1-14 [PMID: 31020551]
  9. Sci Rep. 2019 Jun 24;9(1):9092 [PMID: 31235797]
  10. J Exp Zool A Ecol Genet Physiol. 2007 Nov 1;307(11):654-66 [PMID: 17853401]
  11. Curr Biol. 2014 Aug 4;24(15):1765-71 [PMID: 25042592]
  12. J Exp Biol. 2022 Feb 15;225(Suppl1): [PMID: 35119070]
  13. BMC Genomics. 2014 May 23;15:365 [PMID: 24916340]
  14. J Exp Biol. 2018 Mar 26;221(Pt 6): [PMID: 29581217]
  15. PeerJ. 2018 Jan 15;6:e4233 [PMID: 29362692]
  16. BMC Genomics. 2013 Dec 02;14:846 [PMID: 24295234]
  17. Integr Comp Biol. 2021 Oct 14;61(4):1459-1480 [PMID: 34003260]
  18. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  19. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  20. Nat Genet. 2017 Jun;49(6):895-903 [PMID: 28459453]
  21. Insect Biochem Mol Biol. 2021 Aug;135:103594 [PMID: 34052321]
  22. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  23. Sci Rep. 2017 Aug 21;7(1):8393 [PMID: 28827773]
  24. Int J Biol Macromol. 2018 Jul 1;113:829-840 [PMID: 29454054]
  25. Biomacromolecules. 2007 Sep;8(9):2768-73 [PMID: 17696395]
  26. Science. 1996 Apr 5;272(5258):112-5 [PMID: 8600519]
  27. Mol Biol Evol. 2000 Dec;17(12):1904-13 [PMID: 11110907]
  28. Sci Rep. 2020 Sep 24;10(1):15721 [PMID: 32973264]
  29. J Exp Biol. 2006 Jul;209(Pt 13):2452-61 [PMID: 16788028]
  30. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  31. Zoology (Jena). 2005;108(1):41-6 [PMID: 16351953]
  32. Proc Biol Sci. 2017 May 31;284(1855): [PMID: 28566485]
  33. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  34. Sci Rep. 2019 Jun 10;9(1):8380 [PMID: 31182776]
  35. J Exp Biol. 2007 Feb;210(Pt 4):553-60 [PMID: 17267640]
  36. J Exp Biol. 2006 Aug;209(Pt 16):3131-40 [PMID: 16888061]
  37. Cladistics. 2021 Jun;37(3):298-316 [PMID: 34478199]
  38. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  39. J Evol Biol. 2010 Sep 1;23(9):1839-56 [PMID: 20629854]
  40. BMC Biol. 2017 Jul 31;15(1):62 [PMID: 28756775]
  41. J Exp Biol. 2009 Jul;212(Pt 13):1981-9 [PMID: 19525422]
  42. J Biol Chem. 1992 Sep 25;267(27):19320-4 [PMID: 1527052]
  43. PLoS One. 2018 Sep 20;13(9):e0203563 [PMID: 30235223]
  44. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  45. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  46. Sci Rep. 2019 Nov 21;9(1):17273 [PMID: 31754208]
  47. Biochemistry. 2005 Jun 7;44(22):8006-12 [PMID: 15924419]
  48. Sci Rep. 2019 Sep 20;9(1):13656 [PMID: 31541123]
  49. Nat Mater. 2003 Apr;2(4):278-83 [PMID: 12690403]
  50. G3 (Bethesda). 2021 Jan 18;11(1): [PMID: 33561241]
  51. J Mech Behav Biomed Mater. 2021 Feb;114:104200 [PMID: 33214109]
  52. Arthropod Struct Dev. 2015 Nov;44(6 Pt A):568-73 [PMID: 26248293]
  53. Sci Rep. 2016 Feb 15;6:21589 [PMID: 26875681]
  54. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  55. J Exp Biol. 2003 Nov;206(Pt 22):3905-11 [PMID: 14555732]
  56. J Exp Biol. 2020 Feb 28;223(Pt 5): [PMID: 32001544]
  57. Mol Biol Evol. 2004 Oct;21(10):1950-9 [PMID: 15240839]
  58. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  59. Proc Biol Sci. 2001 Nov 22;268(1483):2339-46 [PMID: 11703874]
  60. Mol Phylogenet Evol. 2016 Jan;94(Pt B):658-675 [PMID: 26454029]
  61. Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11379-84 [PMID: 16061817]
  62. Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419 [PMID: 33125078]
  63. Nucleic Acids Res. 2007 Jan;35(Database issue):D599-603 [PMID: 17135208]
  64. Bioessays. 2001 Aug;23(8):750-6 [PMID: 11494324]
  65. J Mol Biol. 1998 Feb 6;275(5):773-84 [PMID: 9480768]
  66. Annu Rev Entomol. 2014;59:487-512 [PMID: 24160416]
  67. Naturwissenschaften. 2017 Aug;104(7-8):67 [PMID: 28752413]
  68. PLoS One. 2007 Jun 13;2(6):e514 [PMID: 17565367]
  69. Science. 2006 Jun 23;312(5781):1762 [PMID: 16794073]
  70. J Hered. 2003 Jul-Aug;94(4):285-90 [PMID: 12920099]
  71. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  72. Biomacromolecules. 2014 Dec 8;15(12):4447-54 [PMID: 25337802]
  73. G3 (Bethesda). 2019 Jun 5;9(6):1909-1919 [PMID: 30975702]
  74. Nat Commun. 2014 May 06;5:3765 [PMID: 24801114]
  75. Insect Biochem Mol Biol. 2017 Feb;81:80-90 [PMID: 28057598]
  76. J Exp Biol. 2013 Sep 15;216(Pt 18):3388-94 [PMID: 23966586]
  77. Mol Biol Evol. 2013 Mar;30(3):589-601 [PMID: 23155003]
  78. Mol Biol Evol. 2008 Feb;25(2):277-86 [PMID: 18048404]
  79. Naturwissenschaften. 2006 May;93(5):251-4 [PMID: 16544123]
  80. J Morphol. 1994 Jul;221(1):111-119 [PMID: 29865401]

MeSH Term

Animals
Biological Evolution
Fibroins
Gene Duplication
Silk
Spiders

Chemicals

Silk
Fibroins

Word Cloud

Created with Highcharts 10.0.0cribellatecapturesilklinesFlagecribellateevolutionarythreadsspidroinspseudoflagelliformPflagaxialtwooneadhesivespunorb-weavershistorygenefamilyorb-weaverspidroinpuffyfibrilsdistinctrepeatsupportBACKGROUND:Spidersevolvedtypesstickythreads:wetanotherdryspidersespeciallypoorlyunderstoodusegenomicapproachescatalogspider-specificUloborusdiversusRESULTS:showcribellarformsthreeunitsconservedacrosstaxaseparated~ 250MyaalsoproposecandidatesnewtypeparacribellarconnectMoreoverdescribecompletearchitecturecontributesextensibilityfibersCONCLUSIONS:findingcloselyrelatedsupportshomologysuggestsphasefollowingduplicationincorporatedsubsequentlossuloboridsincreaseexpressionexplainingmechanicalpropertiesgroupsthreadCribellateEvolutionGeneGenomicsSpiderSpidroinTranscriptomics

Similar Articles

Cited By